
School of Computing
FACULTY OF ENGINEERING
AND PHYSICAL SCIENCES

Low-poly Mesh Generation for Any Model Input

Thomas Jackson

Submitted in accordance with the requirements for the degree of
MSc High Performance Graphics and Games Engineering

2023/2024



i

The candidate confirms that the following have been submitted.

Items Format Recipient(s) and Date
Source Code
(Deliverable 1 & 2)

GitHub Repository:
(Appendix A)

Supervisor, Assessor,
(12/08/2024)

Project Report
(Deliverable 3)

Report Supervisor, Assessor,
(12/08/2024)

Type of project: Exploratory Software

The candidate confirms that the work submitted is their own and the appropriate credit
has been given where reference has been made to the work of others.

I understand that failure to attribute material which is obtained from another source may
be considered as plagiarism.

(Signature of Student) Thomas Jackson

c○ 2023/2024 The University of Leeds and Thomas Jackson



ii

Summary

The computation of low resolution meshes for level of detail applications in the games
industry is an important part of the optimisation pipeline. The inclusion of meshes
exceeding tens of thousands of triangles is becoming increasingly common within the
video game industry. For this reason, the computation of low resolution meshes for level
of detail application is now needed more than ever. This project builds an application
that can be used for this purpose, taking any input mesh and converting it into a
low-poly version.

This report explores the subject area of low-poly mesh generation, highlighting methods
used and the variety of approaches taken to solve this problem. The research highlights
that an isosurface extraction approach followed by a mesh simplification process will
produce the desired results. Using these pre-existing techniques, requirements are
produced alongside a high level design overview outlining the produced application.
Chapter 4 details the implementation of the software, explaining each step necessary to
build each application. Further details on the methods used to debug and validate the
implementation are also presented in this chapter. To determine the success of the
project, the implementation is evaluated against the key project aims producing
tabulated and visual results. The results presented show that the project is a success,
presenting visually similar low-poly meshes when compared to their original inputs.
Comparing the outputs to those produced by industrial tools shows that the application
produces similar results though in a much slower time.

The report ends with the conclusion stating that the aims of the project have been met
with a valid low-poly mesh generating application produced. Further work is proposed
to optimise the application so that it can compete with industrial tools. Aside from this,
the adaptation of the signed distance field program to tolerate self-intersecting triangles
is identified for future improvements. Details on the application usage and source code
are available in Appendix A or directly at the GitHub repository:
https://github.com/Tomizzed2001/LowPolyMeshGeneration.

https://github.com/Tomizzed2001/LowPolyMeshGeneration
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Chapter 1

Introduction
The rapid advancement in the visual quality of games over the last decade can be
partially attributed to the inclusion of higher definition models made of tens of
thousands of triangles. Visualisation of these models is a computationally expensive task
due to the large number of polygons needed to represent such high levels of detail. This
makes the optimisation of such rendering techniques paramount to the games industry
to ensure acceptable performance in gameplay. One such technique simplifies the models
that are not within direct view of the player, lowering their render cost without
drastically altering the graphics of the gameplay. Unfortunately, real-time methods
cannot always produce a significant reduction in the number of triangles. Instead,
lower-poly models have to be pre-computed and swapped at runtime to decrease
rendering cost. This report will detail the production of an application to produce such
low-poly models and repair any topological issues with a given input mesh so that it can
be rendered at minimal cost. This opening chapter will detail the aims and motivation
of this project, alongside the objectives and deliverables that should be met. It will
further comment on any ethical, legal, or social issues that may arise through the
completion of this project.

1.1 Project Aim

The aim of this project is to create a software application for converting highly detailed
models with high triangle counts into similar looking meshes with a much lower polygon
count. The produced application will aim to generate manifold output files with
significantly fewer triangles within a reasonable time frame when given a large mesh.

A manifold mesh is defined as being a fully closed, self-intersection free mesh that has a
single cycle around each vertex [6]. Manifold meshes are often desired for the games
industry, particularly for object and character models. This is because non-manifold
geometry can cause visual artifacts when rendered due to holes and triangle folds.
Additionally, non-manifold geometry can make rendering and mesh operations
unnecessarily expensive due to the incomplete/incorrect data structure. However, some
meshes used in the games industry are non-manifold on purpose, for example, a terrain
is often left open at the base as it is out of view of the renderer and has clearly defined
boundaries. Closing such a mesh would only increase performance costs and complicate
the program and the same can be applied to items like foliage. This program aims to be
used where manifold geometry is preferred alongside a lower polygon count rather than

1



CHAPTER 1. INTRODUCTION 2

terrains or foliage.

Reasoning the core aims of this project, as the demand for quality graphics rises in video
games, artists are forced to use more triangles to create higher levels of detail. Despite
this creating a visually enjoyable experience for players, higher polygon counts increase
render cost which reduces the smoothness of gameplay. This means that developers of
games have to consider the visual quality to performance trade-off so that games can be
released without an excessive demand for top of the line hardware. To assist in this
issue, techniques that reduce the number of polygons whilst retaining visual quality are
highly sought after in the industry. Methods such as tessellation shaders, aim to reduce
the level of detail (LOD) in a mesh at runtime based on the distance of a mesh from the
camera. This utilises the idea that objects not in direct view of the player require as
much detail and therefore do not require as much computation. This project aims to
build on this concept and reduce polygon counts to a much lower level so that they can
be integrated with the optimisation pipeline. Whilst it would be ideal that this method
could also be used in real-time, it is computationally expensive to ensure the mesh is
manifold and reduce the polygon count to the lowest level. Therefore, the only time
requirement of this project is that the entire process be completed within a reasonable
time frame considering the size of the input mesh. The reason for this ambiguous
statement is that large meshes will take considerably more time than smaller ones.
Furthermore, differences in hardware will result in time differences making it difficult to
give an exact time for all computations to be done.

1.2 Objectives

This section will list the objectives of this project with respect to the project aims.

1. Explore the subject area of low-poly mesh generation to gain insight into possible
solutions and techniques that may be applied for this project.

2. Produce a detailed design overview for the application which can be used during
implementation.

3. Implement the low-poly mesh generating program.

4. Evaluate the implemented software on a set of 10 meshes, determining the number
of polygons reduced, execution time, visual similarity and resulting topology.

5. Compare and contrast outputs of the software against applications used in the
industry.
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1.3 Deliverables

This section will list the deliverables to be produced throughout the course of this
project.

1. An application that produces an output mesh with significantly reduced polygon
count compared to the input.

2. A GitHub repository containing the source code of the application and
instructions for use (Appendix A).

3. A report documenting the research, design, implementation and evaluation
processes undertaken throughout the project.

1.4 Ethical, legal and social issues

Whilst this project has no applicable ethical or social issues associated with the work,
legal issues could arise given the subject area. These issues regard the usage of
copyrighted model data for testing which could be acquired online. To avoid this, only
open-source or freely available data with the correct licensing information will be used in
this project. Furthermore, all data used for this project from external sources will be
cited with reference to the original creators.



Chapter 2

Background Research
This chapter of the report will explore the topic of low-poly mesh generation, reviewing
academic literature on the subject to build insight into previous work done at a
fundamental level and the current state of the art. The information presented in this
chapter will then be used alongside the aims of this project to attain a set of methods
and techniques which will be used to produce the results required.

To explore the surrounding literature, material of relevance has been found through
graphics conference proceedings such as SIGGRAPH [12], pre-existing literature surveys
on mesh simplification [21, 19, 27], and search engines like Google Scholar. By sourcing
research from different locations it is hoped coverage of the topic will be varied and
balanced. Furthermore, work that has been accepted into high-ranking conferences and
journals is likely to be of high quality. Despite this, research papers will be critiqued for
validity and usefulness with regard to the project’s aims.

2.1 Literature Review

Mesh simplification is a well explored topic of computer graphics with a broad variety of
methods explored and evaluated over the years. This section of the background research
will focus on 4 categories of low-poly mesh creation, evaluating both early and recent
work. Challenges posed by each method will be presented and evaluated in the context
of this project’s aims.

2.1.1 Direct Mesh Simplification through edge collapse

Many of the techniques used to reduce the number of polygons within a mesh are
applied directly to the input mesh. Early work in the area, such as the edge collapse
method by Hoppe et al. [15] focused on collapsing edges in the pre-existing mesh in an
order specified by error cost. Garland and Heckbert [13], and Hussain et al. [16] built
upon this method, employing different error cost calculations and ways of finding the
optimal point to collapse to. Garland and Heckbert define the quadric error metrics
(QEM) method which associates a collapse with an error based on the sum of squared
distances to each plane of a vertex. They then calculate the optimal vertex position
using a 4x4 quadric error matrix and use pair contraction to collapse the edge.
Conversely, Hussain et al. [16] choose to collapse one vertex of the edge into the other,
avoiding the need to compute and store optimal vertex positions.

4
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Each paper [15, 13, 16], is successful in reducing the polygon count of the input mesh,
though each has its issues when considering the objectives of this project. The original
edge collapse method outlined by Hoppe et al. [15] is often criticised for being slow due
to how it calculated the error cost. Considering that the work was done between 1993
and 1996, this algorithm could struggle to produce timely results when confronted with
modern-day models that may exceed a million triangles. Furthermore, despite papers
[13, 16] presenting fast and visually preserving outcomes, they fail to guarantee a
manifold result and are reliant on the input mesh being manifold. Whilst this may be a
complete solution when dealing with models that are not required to be manifold, this
project is aimed at models that would benefit from being manifold. It is for this reason
that these are incomplete solutions for this project, although the techniques applied may
be suitable for simplification once a manifold mesh is acquired.

2.1.2 Visual-based mesh generation

Recent work by Gao et al. [12] presents a method that utilises visual hulls to generate
extremely low poly models for buildings. Utilising the visual hull technique allows
non-manifold inputs to be converted and still produce a manifold result. Furthermore,
by using different viewpoints of a camera, the output remains similar despite the drastic
decrease in polygons. Whilst this method works well for building models, applying it to
any model can result in undesired outcomes. This highlights that for more complex
models, different techniques would need to be used and therefore it is unlikely that the
tools outlined in this paper should be used for implementing this project. However, the
paper details extensive evaluation steps specific to the low-poly meshing industry. They
include the comparison between their model and other software on a consistent dataset
of models. This highlights that it will also be important for this project to be compared
alongside software hinting at steps for the evaluation.

2.1.3 Machine learning methods

Whilst this report will not pursue any of the methods utilising machine learning
techniques, much of the current work in mesh simplification uses them. The reasoning
for this choice is due to a lack of background knowledge in the subject of artificial
intelligence and the large number of resources needed for training such a model. An
example of the work in this area is the paper by NVIDIA [14] which utilises a rendered
representation of the mesh to find matches to simplified lookalikes. This produces
successful results, particularly on models that contain foliage which is often difficult to
simplify due to its non-manifold and dense structure. Another recent paper that uses
machine learning is the paper by Potamisa et al. [33] which samples points of the mesh
into sets. These sets are then fed into an edge prediction model to build a mesh with a
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lower triangle count. They acknowledge that whilst they are successful in simplifying
the mesh, a manifold topology cannot be guaranteed.

2.1.4 Isosurface Simplification

When attempting to guarantee a manifold surface, it is often the case that an isosurface
is constructed from the original mesh. Whilst isosurfaces are not low-poly by default,
due to them often being highly tessellated, they are simplified at the end of the
application to reduce complexity. The paper by Zoë et al. [40] focuses on exactly this. It
generates an isosurface with the Marching Cubes algorithm (by Lorensen and Cline [24])
and then simplifies the topology by removing the excess handles and reducing the genus.
Consequently, this action also reduces the polygon count in many cases, though not to a
degree that it could be called low-poly. Whilst this is not directly applicable to the
application this project strives to create, the application of the marching cubes
algorithm to produce a manifold surface is a concept that should be explored.

In similar and more recent work, Manson and Shaefer [25] present a method of
isosurface extraction that results in a lower polygon count whilst preserving features
that are often lost on an isosurface. During the standard marching cubes algorithm [24],
sharp features are often lost since they cannot be represented within a cube. To avoid
this, and reduce the number of triangles, a dual vertex method is used in which vertices
are paired and placed directly on the isosurface causing some triangles to become
redundant. This results in an accurate representation of the original mesh, due to the
preservation of features, which also has a much lower polygon count. The solution
presented by Manson and Shaefer may meet the success criteria for this project.
Furthermore, the application of further simplification algorithms, like the ones outlined
in Subsection 2.1.1, could be applied to gain an even lower polygon count. Following a
similar thought process to this, the Robust Low-Poly Meshing paper by Chen et al. [8]
presents a solution that generates extremely low poly, feature preserving, manifold
meshes. Chen et al. acknowledge that whilst Manson and Shaefer present a good
solution, the number of triangles can be far too great to consider low-poly. In their
method, they instead present a 2 step process consisting of isosurface extraction and
mesh optimisation. Within the first step they employ unsigned distance fields partnered
with a modified version of the MC33 algorithm [9] to extract an isosurface. They then
apply a variation of techniques to regain the features lost in the extraction process. The
optimisation stage includes a set of simplification techniques including the quadric edge
collapse method [13] to bring the solution to the desired number of triangles. The
advantage of the more modern method by Chen et al. in 2023 over Manson and Shaefer
in 2010 is that they obtain the same benefits in addition to an extremely low poly mesh
that does not require further simplification.
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All 3 methods [8, 25, 40] present satisfactory results when regarding this project’s aims.
Furthermore, the results of the paper by Chen et al. show it as equal or better to many
of the tools used to generate low-poly meshes used in the industry such as Simplygon
[37] and Blender [5]. With this paper being recently published in 2023, given the time of
writing, this can be considered to be state of the art. Whilst the results are promising,
the complexity of the paper may mean that this method cannot be followed exactly
within the given time frame. Despite this, the general outline of the isosurface
extraction followed by simplification seems to produce the results needed. Furthermore,
less recent methods using isosurfaces also generate valid results suggesting that they will
be a useful tool for this project.

2.2 Methods and Techniques

Considering the project aims in Section 1.1 and the background research done, valuable
techniques for this project will include isosurface extraction and mesh simplification
techniques as used in [8]. Furthermore, it will be important to consider the different
data structures required to implement the techniques efficiently. This section will cover
each of these methods and the full extent of techniques required to implement them.

2.2.1 Isosurface extraction

Extracting an isosurface involves the Marching Cubes algorithm first presented in the
1987 paper by Lorensen and Cline [24]. Using this method guarantees a manifold,
self-intersection free mesh when given a signed distance field that details the distance
from uniform points on a grid to the original mesh. By incorporating this step into the
implementation, even non-manifold input meshes can be returned manifold -as is one of
the requirements of this project. This subsection will detail the different methods of
obtaining the signed distance field and the variations of the marching cubes algorithm.

Distance Fields

There are two types of distance fields that can be computed, signed and unsigned.
Unsigned distance fields are simply the distance from a point p to the closest point on
the mesh [19]. The signed distance field is then the distance as defined previously with
the addition of a positive or negative sign. This sign is determined where a distance is
negative if the value is inside the mesh and positive if outside the mesh [2].

To calculate the closest distance from a point to a triangle, Jones [18] presents a 3D and
a 2D method and compares the efficiency of the two. Both methods involve dividing the
triangle into regions as demonstrated in Fig. 1 of [19] and determining which region the
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point lies. The 3D method explained, projects the point in space onto the plane of the
triangle. This is achieved by taking the angle between the triangle normal and the
vector describing a triangle vertex to the point in space. Contrasting this, the 2D
method defines a transformation matrix which translates and rotates the triangle to lie
on the yz plane. This makes the x component of the point’s location irrelevant when
determining the region it lies in. Jones concludes that the 2D method completes faster
than the 3D method in many scenarios. However, it should be noted that the 2D
solution requires the storage of a 4x4 transformation matrix and several 3D vectors
defining edge normals for each triangle in the mesh. Furthermore, test data shows that
the largest mesh tested contained only 3080 triangles. This is a reasonably small mesh
when considering that some modern meshes exceed 1 million triangles, with most having
more than 10,000. Eberly [10] presents an alternative method for calculating the
distance from a point to a triangle. This technique also splits the triangle into regions in
which the point may lay. However, these regions differ from the one shown in [19], with
the regions at each edge being defined by the lines of the neighbour edges. Eberly
presents a more mathematical method by defining the distance in terms of a quadratic
function with the aim of the algorithm being to minimise it. For functions that have
their minimum on the boundary, the regions are used to find the distance to the closest
point. Whilst Eberly presents a clearly defined implementation, the work is not clearly
evaluated so no conclusions can be made from the results of the work. Despite this, the
paper presents another option for defining the regions of the triangle which does not
require extra computation to find the normals for each edge.

The survey on distance fields by Jones et al. [19] explains that there are multiple ways
to calculate the sign of the distance from a triangle. The simplest of these methods is to
use the dot product of the face normal and the vector from triangle to point, defining
negative values as being inside the mesh. However, as detailed by Payne [32], distances
of opposite signs can be tied, particularly at sharp areas of the mesh. This is due to the
normals of the vertices and edges being defined the same as the face, which is not
necessarily true in most cases. To fix this, normals must be assigned for each vertex and
edge separately; these are called pseudonormals or in some cases smooth normals.
Baerentzen et al. [3] use an angle weighted pseudonormal whereby each face incident on
a vertex or edge has its normal summed to produce a normal vector. This produces a
smoothed normal vector allowing points to be accurately classified as inside or outside
the mesh during tied distance scenarios. It is also explained that for edges, an
unweighted average of both faces produces correct pseudonormals.

Further research into distance fields highlights that there are limitations to the
technique, particularly when dealing with self-intersecting triangles. Chapter 34 of GPU
Gems 3 [28] explains that triangle folds can cause an issue with signed distance fields.
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Whilst it does not exactly explain how this can be fixed due to it being a complex task
requiring multiple passes of the distance fields, it details the criteria for which it
becomes a problem. It describes triangle folds as overlapping triangles with backward
facing normals. This causes issues with signed distance fields as it prevents the outside
and inside of the meshes from being clearly defined. Similarly, self-intersecting triangles
can cause the same issues as they prevent there from being a clearly defined outside and
inside of the mesh.

Marching Cubes

In 1987, Lorensen and Cline suggested the marching cubes algorithm [24] to create
triangulated models that could be used to visualise medical data. The general algorithm
used the concept that a signed distance field could be defined as a set of cubes with a
signed distance for each of the 8 vertices of the cube. Using this data, triangle vertices
could be placed on each edge where the signed distance was negative on one side and
positive on the other. This is because the sign flip implies that the edge is intersected by
the original surface as one point is inside the mesh and the other outside. They then
explain that the number of possible cases can be limited to 28 or 256 cases. By applying
rotations and symmetries to the cube, they surmised that there could only be 14
different base cases within the 256 and thus, the binary representation of the cube could
be used to select a case from a look-up table and triangulate the cube. The final step is
then to march through the signed distance field applying this method until the entire
field is defined and a resultant mesh is found, hence the name "Marching Cubes". They
further improve this model by applying linear interpolation along each edge where a
vertex is placed. This positions each vertex according to where the surface intersects,
resulting in a smoothed surface as opposed to one clearly defined by cubes.

Soon after the publication of the marching cubes method, researchers discovered that
the 14 cases proposed by Lorensen and Cline could result in a non-manifold mesh with
holes in it. Montani et al. [26] states that base cases 3, 6, 7, 10, 12, and 13 have
ambiguous faces. They define a face on a cube as ambiguous if diagonally opposite
vertices of the face have opposite signs. This results in the complimentary cases of each
configuration listed to fit incorrectly with the other configurations. To fix this, Montani
et al. present a modified look-up table with differing triangulations for the compliments
of the ambiguous cases. This results in a guaranteed manifold surface at the cost of the
maximum number of triangles per cube increasing from 4 in [24] to 5 in [26]. Several
years later, Nielson [29] proposed that the number of cases could be further extended to
represent the multitude of possible surface representations within each cube. This
technique used more than the original 256 configurations used in [24, 26] and added
additional lookup tables for each ambiguous case. To decide on which specific
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sub-configuration should be used, Nielson employs the use of his earlier work, the
asymptotic decider [30] and determines how vertices are connected on the interior of the
cube. Nielson then reasons that this combination of cases is extensive with no other
cases being possible. This is then further backed up by the alternative proof presented
by Carr [7] in 2007, completing the extensive research into possible case configurations
for marching cubes.

Further research into the area of marching cubes focused on feature preservation with
the marching cubes algorithm. The first of these solutions was by Kobbelt et al. [23]
where they proposed the extended marching cubes algorithm to retain the sharp
features lost in the marching cubes process. By using a directed distance field, they
detect which of the cubes in the grid would contain a sharp feature and apply additional
sample points to the grid to re-construct the original shape. Unfortunately, the method
presented can produce gaps in the mesh, with the authors acknowledging this in their
concluding statement. Another notable process is the dual marching cubes method by
Schaefer and Warren [35]. This method also preserves sharp features with the addition
of producing a water-tight mesh. To implement this, they use octrees to define the mesh
and extract a dual grid from this. The usage of a dual grid then allows them to re-create
the sharp features lost during the marching cubes algorithm thus creating a hole free,
feature preserving mesh.

2.2.2 Mesh Simplification

Mesh simplification is the main thing to consider when trying to generate a low-poly
mesh from a high-poly mesh. As discussed in Subsection 2.1.1, many of the earliest
methods of low poly mesh generation were only mesh simplification. With this, the
standard procedure was to calculate an error cost for an edge collapse and then do the
least expensive operation as seen in [13, 16, 15]. This subsection will briefly detail the
different options to simplify meshes and re-iterate the techniques in subsection 2.1.1.

Edge collapse methods

The paper by Hoppe [15] outlines the original edge collapse method in which a vertex is
collapsed into another via an edge joining them both. The remaining edge is then moved
to an optimal position, removing the edge and redefining the faces around it. It is
highlighted that choosing the edge to collapse correctly is crucial to maintaining the
quality of the simplified meshes. To choose this order, they propose a distance energy
term where the squared distance to the mesh is calculated for the change in each edge.
Hussain [16] argues that this method is slow due to the multiple distance to mesh
calculations per edge and proposes the half edge collapse method. The half edge collapse
method similarly collapses an edge, however, it chooses one of the original vertex
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positions to remain the same. This means vertices do not need to be moved and instead
an edge can be costed without calculating optimal vertex positions. One of the most
popular methods for edge collapse and mesh simplification is in the paper by Garland
and Heckbert [13]. This paper uses quadric error metrics to calculate the error of an
edge collapse and an optimal vertex so that the collapse method defined by Hoppe [15]
can be used. (This method is covered in detail in subsection 2.1.1 for more details on
the implementation). This method is presented as both fast and relatively memory
conserving, only needing 10 floating point values per vertex. Furthermore, this method
results in visually similar meshes as shown in the figures presented in papers [13, 8].

Vertex removal methods

Another method of mesh simplification is to ignore the edges and focus on the removal
of vertices. This technique often results in non-manifold meshes requiring that once
enough vertices are removed, the mesh is re-triangulated. This method is called vertex
clustering and is presented by Rossignac and Borrel [34]. Vertex clustering is the process
by which a mesh is separated into multiple bounding boxes which are then generalised
to a single vertex. Each of the generalised vertices are then joined together through
re-triangulation to create an approximation of the overall mesh with significantly fewer
triangles. The disadvantage to this method is that the resulting mesh can be
non-manifold and result in "shark fin" like triangles.

Shroeder et al. [36] implement a vertex decimation technique whereby all vertices in the
mesh are evaluated against certain criteria and removed if the criteria are met. These
checks vary depending on how the vertex is classified as shown in Figure 1 of [36], with
certain vertices using a distance to plane criteria whilst others use distance to edge. If
eligible for collapse, the vertex and all triangles using the vertex are removed from the
mesh. The resultant hole is then re-triangulated using a recursive procedure which aims
to reduce the number of triangles used previously whilst maintaining the topology of the
mesh. A disadvantage to this method is the recursive reconstruction of each hole which
can be time consuming and does not guarantee a set number of polygons will be
removed.

2.2.3 Data structures

Each of the well-known data structures used in computer graphics is outlined in Chapter
2 of the book by Botsch et al. [6]. The first set of data structures discussed is the face
based data structure, the first of which is triangle soup. Triangle soup is an unordered
set of triangles stored in an array represented by the vertices defining the 3 points of a
triangle. This method of storage is the most basic though it does not represent the
topology of the mesh and consumes excess memory with vertex locations being defined
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multiple times. To solve this issue, the indexed face data structure is proposed with an
index given to represent each vertex. Each face is then defined as the set of indices
referring to each vertex on the face. Many of the indexed face file formats are used in
industry with the most notable being the OBJ file format. This format is also capable of
storing vertex normals and texture coordinates though is not required for the format to
be used.

Aside from face based structures, edge based ones can be used, particularly when
wanting to know about the connectivity of a mesh. One of the data structures specified
in [6] is the winged-edge structure by Baumgart [4]. This method sees that each edge
stores the vertices it is between, the faces it joins and the next/previous edge in the
array. This is particularly useful when doing edge operations as both affected faces are
known. Equally, this can cause issues when trying to find all connected vertices to a
single vertex. Two similar methods proposed are the half edge [20] and the directed edge
[39] data structures. Each of these splits an edge into 2 halves, one for each triangle,
with the distinction being that the directed edge structure focuses on the direction of an
edge. Faces are defined by their edges in both structures, with the half edge structure
keeping track of the next and previous edges visited. The directed edge structure avoids
doing this by storing each edge in the order of the faces making it indexable with
modulo 3.

2.3 Choice of methods

Choosing the set of techniques to be implemented requires the consideration of the aims
of the project and the time frame in which it is to be done. Starting with the first
method of generating a distance field in Subsection 2.2.1. The paper by Jones [18] is
chosen as a guideline for the implementation. Utilising Jones’ method for dividing a
triangle into regions over the method presented by Eberly [10], provides a more detailed
estimate of which area of the triangle the point is closest to. This is because using
Eberly’s method will require further computation if in an edge region as a point to line
segment calculation will be required rather than the standard point to line one.
Furthermore, returning from the loop earlier in the case the distance is found is always
better, meaning that the broadening of the vertex regions makes it more likely that this
option will be chosen, saving on computation. In addition to this, the 3D method for
calculating the distance when inside the triangle will be used for its simplicity, as it only
requires a single dot product and a multiplication. For deciding which region the point
lies in, a novel algorithm will be used consisting primarily of cross products and dot
products to determine which side of a plane a point lies. By doing this it is hoped that
the excess computation of the 3D method by Jones can be avoided and the added
memory cost of the 2D method can be reduced. The final step to produce the signed
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distance fields will be to choose the sign of the distance. Given the problems with using
face normals to calculate the sign, the angle weighted pseudonormal method by
Baerentzen et al. [3] will be used. Choosing this method will guarantee that points are
classified as inside or outside the mesh correctly for meshes where self-intersections are
not present. In the cases where self-intersections / triangle folds are present, the
solution will not be able to guarantee a correct signed distance field. Whilst having the
functionality to deal with this would be ideal, this is a much more complex task, as
outlined in Chapter 34 of [28], and would take too much time to implement.

For the second stage of the iso surface extraction, a marching cube method must be
chosen. For this project the case tables presented by Montani et al. [26] will be used
alongside the original marching cubes method by Lorensen and Cline [24]. Choosing
these tables will mean that the iso-surface is guaranteed to be manifold unlike the ones
presented by Lorensen and Cline. Furthermore, Nielson’s tables [29] result in more than
256 cases making the choice of triangulation complex. Utilising the tables by Montani et
al. ensures that the result will be manifold, as is required of the project, whilst only
using 256 cases keeping it simple to compute. Reasoning the choice of Lorensen and
Cline’s marching method, it is by far the simplest approach and given the time frame
available, a working solution is prioritised over an advanced partial solution. Whilst the
feature preservation qualities of methods [23, 35] are nice and will result in better
looking meshes, it is only necessary that meshes look similar from a distance where
sharp features are less noticeable.

Moving on to the choice of simplification techniques, the method presented by Garland
and Heckbert [13] will be implemented. This method was chosen for its speed advantage
over the original edge collapse method by Hoppe [15] and for the simplicity of the error
cost over the one proposed by Hussain [16]. Furthermore, with the input to the collapse
process being guaranteed to be manifold, processes that take the borders of the mesh
into account are unnecessary for this application. It is worth noting that the vertex
removal methods [36, 34] were removed from consideration due to the need to
re-triangulate the surface post vertex removal. This is a costly operation which can be
entirely avoided with the use of edge collapse techniques without impact (in most cases)
on visual quality or computation time.

Knowing which methods will be used, the best data structures can be chosen. This
project will make use of the index faced data structure, namely the OBJ file format,
which is one of the most popular within the industry [1]. This format will primarily be
used for input and export of the meshes making the program easy to use without prior
data formatting. For operating on the mesh, once it has been converted to an isosurface,
the directed edge format will be used. The benefit of using this structure is that it
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contains more detail on the connectivity than the face based formats. This is done
whilst maintaining the detail of both edge and vertex connectivity without the storage
of excessive data. This will lower memory usage and the computation required to
update the structure per collapse operation.

To summarise, the distance to triangle method presented by Jones [18] will be used
alongside a novel selection method for the region of the triangle to find the distance to
such a triangle. To calculate the sign of this distance, an unweighted pseudonormal will
be calculated for each edge and vertex in the mesh as shown by Baerentzen et al. [3]. To
build the isosurface from the signed distance field, look-up tables by Montani et al [26]
will be used in conjunction with the marching method by Lorensen and Cline [24].
Finally, the mesh will be simplified with the use of the quadric error metric technique
discovered by Garland and Heckbert [13]. This combination of methods and techniques
will result in a manifold, low-poly mesh being computed from any given input mesh
within a reasonable time thus, meeting the success criteria for this project.



Chapter 3

Software Requirements & System Design
Building on the chosen technologies for this project, selected in Section 2.3, this chapter
will outline a set of requirements and explain design decisions made prior to
implementation. The first section will detail the functional and non-functional
requirements of the implementation, expanding on the aims of the project detailed in
Section 1.1. The design section will then build upon the requirements and explain the
high level design decisions made, detailing how the user will operate the application.

3.1 Software Requirements

The requirements of the project aim to encapsulate the overall aim (Section 1.1) and
provide specific metrics to create detailed success criteria for the produced application.
In addition to this, requirements are made taking into account the background research
(Chapter 2) to ensure that all requirements are attainable. Despite this project utilising
a renderer to visualise the output meshes, the goals of the project are specific to the
mesh generation. Considering this, requirements are based solely on the meshing process
as it is expected that users will view the output meshes in their preferred environment
for their specific use cases.

3.1.1 Functional Requirements

This subsection will focus on detailing the functional requirements of the implemented
software. The program should be mostly autonomous with user input only being
required to input the desired input files and operating parameters. This means that the
user will not be involved for most of the process meaning functional requirements will
detail what each application takes as input and then produces. Ensuring that each of
the functional requirements are met, will mean that the program produced will output
results, though they will not necessarily be successful.

As explained in the system design (Subsection 3.2.1), the application will be split into 3
sub-programs, each focusing on the different processes identified by the research (Section
2.3). For this reason, functional requirements are identified with 2 numbers (e.g, 2.3)
within Tables 3.1, 3.2, 3.3. The first number signifies the process with 1 being distance
field generation, 2 being the marching cubes process and 3 being the simplification step.
The second number is then simply the index of that requirement within the process. For
example, 2.3 would refer to the 2nd requirement of the marching cubes process.

15
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FR Index Requirement Description

1.1 The program should take a .OBJ file as input and read in the
associated mesh.

1.2 The program shall allow users to optionally specify a maximum grid
size for the largest dimension, x y or z.

1.3 The program will generate a grid of uniform cubes which encapsu-
lates the entire mesh.

1.4 The program will keep the user informed of the current stage of the
process to indicate the ongoing computation.

1.5 The program will output a signed distance field to a human-
readable format.

Table 3.1: The functional requirements (FR) table for the signed distance fields
application.

FR Index Requirement Description

2.1 The program should take a signed distance field, such as the one
output by the distance field application as input.

2.2 The program should allow users to optionally specify if an OBJ file
output is required alongside the directed edge format.

2.3 The program should store no more than one vertex per edge of the
distance field.

2.4 The program will output interpolated vertex positions for each edge
of the grid that the surface crosses.

2.5 The program will output an isosurface to the directed edge file
format.

Table 3.2: The functional requirements (FR) table for the marching cubes application.

FR Index Requirement Description

3.1 The program should take in an isosurface in the directed edge file
format.

3.2 The program shall allow users to optionally specify a desired trian-
gle count and or a maximum error tolerance.

3.3 The program will keep the user informed of the current stage of the
process to indicate the ongoing computation.

3.4 The program should terminate when the user-specified triangle
count is met or the maximum error tolerance has been met.

3.5 The program should return a watertight, self-intersection free mesh.

Table 3.3: The functional requirements (FR) table for the edge collapse application.
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3.1.2 Non-Functional Requirements

The non-functional requirements of this program focus on the constraints in which the
functional requirements should be met. Unlike the functional requirements,
non-functional requirements will be specified for the whole system rather than the single
application. This is because they apply to all applications or the outcome of the entire
system. Furthermore, this set of requirements will focus on the quality of the solution
which will be the primary focus during the evaluation of the program. Whilst meeting
the functional requirements in subsection 3.1.1 will mean an outcome is produced,
meeting all non-functional requirements will mean a successful outcome with regard to
the project’s aims outlined in section 1.1.

NFR Index Requirement Description

1 The system should take no longer than 1 minute per 2500 polygons
in the input mesh to complete.

2 The system should be modular meaning that the applications can
be used multiple times without re-computing the prior stages.

3 The system should be well documented, allowing the source code
to be improved upon by other developers.

4 The system should ensure the isosurface data structure maintains
its topology throughout the process.

5 The system should reduce polygon counts to at least 10% of the
original count when given an input exceeding 10000 triangles.

6 The system should be straightforward to use with only the compile
and run instructions being necessary to operate the program.

7 The system should output a similar looking mesh to the one fed
into the application.

Table 3.4: The non-functional requirements (NFR) table.

3.2 System Design

This section detailing the system design will discuss the various design decisions made
to accommodate all of the requirements in section 3.1. The overall design will follow a
similar method to the one detailed by Chen et al. [8] and explored in subsection 2.1.4.
This design section will explain how the 2-step method detailed in [8] will be
re-structured to match the aims and constraints of this project. To achieve this, the first
subsection will show a full system overview and explain the reasoning behind the 3
separate applications. The following subsections will focus on the high-level design of
each application, referring to the technologies chosen in section 2.3 as the building
blocks for each application.
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Figure 3.1: Full system design. Manual inputs are pink, programs are yellow and
input/output are blue.

3.2.1 Full system design overview

The full software application consists of 3 separate programs that are to be used in
series to generate a low-poly model. The order in which the programs should be used is
shown in Figure 3.1 and is based on the 2 core steps: isosurface extraction and mesh
simplification as used by Chen et al. [8]. There are 2 key reasons for splitting the
application into 3 separate programs which are detailed in the following paragraphs.

The first reason for separating the applications is that by developing each stage
individually, each process can be debugged without the interference of other processes.
This means that problems encountered during the development stages are limited to one
application, therefore, saving time searching through the code base for bugs.
Furthermore, separating each of these concerns means that application debugging can be
done faster as prior stages are not computed. Another benefit to this approach, when
considering debugging, is that it is much easier to feed test data into separate programs.
For example, to get an output from the marching cubes algorithm, an object file would
need to be fed into the distance field application to produce a scalar field. By separating
the two processes, with each having its own input values, hand made distance fields can
be fed directly into the marching cubes algorithm which have known and calculable
outcomes. This can help when assessing the functionality of the application for the
smallest cases as well as any foreseen edge cases.

The second reason for using 3 applications instead of one is to allow the user to interact
with the system in a modular fashion (NFR 2). This will be massively beneficial to the
user when they require multiple models with varying numbers of polygons. By
separating the programs the user may re-input the isosurface with a different number of
desired triangles to get a different output. This way, the user does not need to wait for
the distance field and iso-surface to be re-computed every time they need a different
level of detail. It is also possible for this benefit to be an inconvenience to a user who
simply wishes to set the program going and come back to a complete solution. However,
the ability to re-run certain stages of the process for varying outputs is something that
users are much more likely to prefer. It is also possible that should a user wish to have
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Figure 3.2: Block design diagram for the signed distance fields application.
Parallelisable blocks are outlined in yellow.

one entire program, each of the code bases can easily be joined together to create a
single application. This ties into NFR 3, which thanks to the separation, the code can
be further developed or repurposed to use a single stage or multiple as they are
independent of each other.

3.2.2 Distance field application design

The first stage of the process is to generate a signed distance field that can be fed into
the marching cubes application to produce an isosurface [24]. As explained in section
2.3, the distance field application will use Jones’s method [18] to compute the distance
and Baerentzen et al.[3] to compute the sign. Considering these technologies alongside
the functional requirements in Table 3.1, leads to the construction of the block diagram
in Figure 3.2. As shown by the input and output blocks, the user can specify the object
file (FR 1.1) and maximum grid size (FR 1.2) to obtain a signed distance field output
(FR 1.5). Functional requirements 1.3 and 1.4 are more implementation dependent.
However, FR 1.4 can be implicitly incorporated into the design by simply outputting to
the user each time a new process is started. Further input by the user can enable
optimisation of the algorithm by exploiting sparse regions of the mesh. This is further
explained in the implementation of the program in Subsection 4.2.4.

Considering the non-functional requirements (NFR) within the scope of the distance
field application design, the main NFR to consider is 1. Due to the application having
the potential to process very large inputs and the expensive iterative computation, it
can be foreseen that this application will be slow. Therefore, the design highlights
processes that can be parallelised to reduce the execution time of the program.
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Figure 3.3: Block design diagram for the marching cubes application.

Processes that may be parallelised are highlighted in the diagram (Figure 3.2) with a
yellow outline. Each of these components are independent from instances of themselves
and should be parallelised accordingly. Whilst this does not guarantee that NFR 1 will
be met, it ensures that it is at the forefront of the design where possible.

3.2.3 Marching cubes application design

Taking the signed distance field input (FR 2.1), the marching cubes application should
output an isosurface to a directed edge file (FR 2.5). Furthermore, should the user
choose to have an OBJ file as well, this should be outputted alongside the directed edge
file (FR 2.2). Both of these functional requirements are incorporated into the design as
shown in Figure 3.3. This allows the user to use the isosurface on its own; which is
another benefit to the modularity of the design. The functional requirements, 2.3 and
2.4, are also accounted for within the design. Specific processes are there to ensure that
only one vertex is placed per edge (FR 2.3) and that the vertex placement is
interpolated between the two points as described by Lorensen and Cline [24] (FR 2.4).

The cases used for the marching cubes algorithm, chosen to be based on Montani et al
[26], should be stored as an external set of data that can be referred to as a look-up
table. By designing the application in such a way, cases can be easily modified, should
issues with the case tables arise, as they are separated from the main code.
Furthermore, this allows each cube to be quickly triangulated based on the calculated
case number which is a step towards meeting NFR 1. Considering the nonfunctional
requirement 4, this application creates the isosurface so it must be topologically correct.
By ensuring functional requirements 2.3 and 2.4 are implemented correctly NFR 4
should follow for this stage.
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Figure 3.4: Block design diagram for the edge collapse application.

3.2.4 Edge collapse application design

The final step in the 3 stage process is to simplify the isosurface generated by the
marching cubes program. The edge collapse application takes the isosurface as a
directed edge file for input (FR 3.1) along with the optional input of a user-specified
triangle count or stopping error (FR 3.2). The optional input will allow the user to
tailor the output to their specific needs should they only want a moderate reduction in
polygons. However, inputting a low triangle count does not guarantee that the output
will have that number since the program will stop should there be no more valid edges
to collapse. Figure 3.4 shows each of the manual input options alongside the processes
that need to be implemented to produce a low-poly mesh (FR 3.5). The design
highlights that the main loop of the application (as shown by the cyclic process) should
stop should there be no valid edges, the triangle count has been achieved, or a maximum
stopping error has been reached. This stopping criteria for triangle count is in place so
that FR 3.4 can be met. Furthermore, ensuring that only valid edges can be collapsed
ensures that the topology remains intact (NFR 4) and therefore remains watertight and
self-intersection free FR 3.5. It is worth noting that this assumes the isosurface taken as
input is topologically correct to begin with. The final functional requirement for this
application is 3.3. Similarly to the distance fields function, larger models may result in
lengthier program runtimes. To keep the user informed of progress, each process defined
in the design will be a stage that can be output to the user.



Chapter 4

Software Implementation
This chapter of the report covers the technical details and methods used to fulfil the
requirements detailed in the previous chapter. Starting with an insight into the data
structures required to operate on and output a triangular mesh, this chapter will detail
the necessary steps needed for iso-surface extraction and the simplification of the given
iso-surface to produce an output mesh with a reduced polygon count. The
implementation makes use of the standard C ++ libraries such as vector and cmath as
well as the well-known GLM header library for vector and matrix mathematics [11].

4.1 Data Structures

When dealing with the manipulation and storage of geometric data, it is important to
consider the format that the data will take during the process. Considering the research
undertaken in Subsection 2.2.3, the directed-edge data structure has been chosen for the
internal manipulation of data within the application. This section will also detail the
index faced data structure which is used for input and output due to its widely used
format.

4.1.1 Index Faced Structure

Index faced storage of geometric meshes is one of the most common formats used by
industry [1] due to how easily it can be used in rendering. An example of an index faced
structure that is widely used is the Wavefront .OBJ file format. OBJ files can be
exported from nearly all mesh modelling software and is accepted by nearly all modern
game engines making it a stable choice for the input and output format of the
application. This being said, its format does not easily allow edge operations, which are
crucial to this project, so cannot be used as the only data structure.

The index faced structure stores each unique vertex in a C ++ vector of glm::vec3
storing the position in space of each vertex. Incidentally, each vertex’s index is its
position in the array and will be known as v. Each vertex can then be optionally given a
normal (vn) and or texture coordinate vt which all have matching indexes in their
respective arrays. To join these values together, each face is then defined at minimum as
a set of 3 vertices making the faces array another set of glm::vec3, this time with length
f, the number of triangles in the mesh.

22
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Whilst the above paragraph completely details the structure’s memory layout, the
details of how this is presented in an external storage file such as the .OBJ format is
slightly different. Each set of vertex data is set out in the order it is presented in the
array, with v0, vn0, and vt0 all being the first of its type written to file. They are all
then connected by the face definition, where the structure of a single vertex in a triangle
is defined as v/vt/vn . In the scope of this application, texture coordinates will not be
included in the output to simplify the overall process. An example of the input/output
layout, disregarding the vertex texture coordinates, is presented in Listing 1.

struct indexFaced {
std::vector<glm::vec3> vertices;
std::vector<glm::vec3> faces;
std::vector<glm::vec3> vNormals;

};

Listing 1: Code snippet of the index faced structure within the implementation.

4.1.2 Directed-Edge Structure

The directed edge data structure is a method of defining a mesh based on the direction
of each half-edge in a triangle [6]. The research done in 2.2.3 shows that by using this
data layout, each triangle of the mesh can be defined by 3 vertex indices. This doubles
as the edge list for that triangle defined by the sending or receiving vertex. Additionally,
each directed edge stores its other half which is the directed edge in the opposing
direction of the complete edge.

To utilise the directed edge data structure, the spatial location of each vertex must be
known and added to an array of glm::vec3 where the x, y and z locations are stored
accordingly. Thus, the size of the final vertex array will be an array of length v, where v
is the number of unique vertices. Therefore, when converting directly to/from the index
faced structure, the vertex array can be re-used as they are identical. Considering the
vertex IDs (vID), the edges array, which doubles as the faces array, stores a triangle as
the set of 3 vertices in counter-clockwise order around the face. Storing each set of 3
vIDs in a 1-dimensional C ++ vector results in an array of size 3f where f is the
number of faces/triangles in the mesh. Given this array, the global edge index eID is
simply the position in the array whilst its index within its triangle can be found as eID
% 3;. To retrieve the face index fID from the array, one can do the integer division
operation eID / 3, resulting in the floating point value being truncated and the index
of the first vertex in the triangle being returned.
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In addition to storing the vertices and faces, the directed edge structure differs from
other methods by storing the other half of each edge in a 1-dimensional array of length
3f. The other half of a directed edge is the directed edge in the opposing direction that
would complete the edge between two adjacent triangles. Knowing this, finding the other
half of an edge is as simple as searching through the faces array looking for where the
same 2 vertex IDs occur but in reverse. It is worth noting that an edge can be defined by
either its sending vertex or its receiving vertex, this implementation defines an edge by
its sending vertex. Therefore, if eID is the first vertex in the triangle, then eID is the
sending vertex and eID + 1 is the receiving vertex for edge eID. Finally, whilst the first
directed edge is stored as part of the data structure defined by [39], this implementation
will not utilise it and therefore not store this array to save 4v bytes of memory.

By utilising this data storage technique, each vertex is defined using 12 bytes of memory
and each directed edge uses 8 bytes of memory. The cost of each face can be totalled to
nothing due to it being defined by the ordering of each directed edge. This structure
allows fast access to triangles and the components they are comprised of. It also makes
finding each adjacent triangle easy by using the other half array. Maintaining this
structure throughout the various mesh operations ensures that data can be accessed
efficiently and topological correctness can be maintained as required by NFR 4. The
code implementing the directed edge structure is presented in Listing 2.

struct dirEdge {
std::vector<glm::vec3> vertices;
std::vector<int> edges;
std::vector<int> otherhalves;

};

Listing 2: Code snippet of the directed edge structure within the implementation.

4.2 Signed Distance Fields

The first step in constructing an iso-surface is to construct a signed distance field that
partitions a 3-dimensional space into a grid of points. Within this grid, the distance
field acts as a function which takes a position as input and outputs the closest distance
to the mesh as a scalar value. Effectively, this means finding the closest triangle to a
point for every point within the grid. The implementation of the signed distance fields
detailed in this section follows the design outlined in Section 3.2.2, taking an .OBJ file
as input to produce a signed distance field in the form of a 3-dimensional set of floats.



CHAPTER 4. SOFTWARE IMPLEMENTATION 25

4.2.1 Choosing a grid

The size of the grid is determined by two key factors: the size of the mesh in 3D space
and the spacing between grid points. To calculate the size of the grid required, the
maximum and minimum x, y and z positions are stored whilst the input file is read into
the program. This ensures that the full extent of the mesh, as positioned on all 3 axes,
is encapsulated by the field as per FR 1.3. Note that the x, y and z values are compared
independently so the smallest x and largest x will be stored regardless of their y and z
values. As a precaution, padding of 2 grid lengths is added to each value so that the
mesh does not touch the walls of the scalar field. Once the bounds of the grid have been
determined, the field is partitioned into an integer number of grid points using the size
of the grid calculated or defined by the user. It may be necessary to round the x, y and
z values so that the spacing is completely even between all points. An example of the
code required to position the start and end points for even spacing is shown in Listing 3.

for(int i = 0; i < 3; i++){
if(point[i] < 0){ // Ensure the co-ordinate stays negative

point[i] = -(abs(point[i]) + (sizeOfGrid - fmod(abs(point[i]),
sizeOfGrid))) + (sign * 2 * sizeOfGrid);

}
else{ // Co-ordinate is positive

point[i] = point[i] + (sizeOfGrid - fmod(point[i], sizeOfGrid))
+ (sign * 2 * sizeOfGrid);

}
}

Listing 3: Code snippet showing how minimum and maximum points can be rounded
where the sign is negative if minimum and positive otherwise.

Calculating the optimal grid size is important to ensure that the signed distance field
produced is an accurate representation of the original mesh. Whilst higher grid
resolutions generate more accurate distance fields, they are much slower to compute and
result in a highly tessellated isosurface which is slow to simplify. In the opposite case,
low resolution grids can miss sharp features in the mesh causing poor isosurfaces to be
produced which are not necessarily manifold. Examples of how different grid sizes affect
sharp features are shown in Figure 4.1. Given that problems occur at sharp or narrow
features, a grid size that is likely to find them is needed. For this implementation, the
average triangle edge length is used to estimate the grid size. Using this value makes
sharp features likely to be found whilst scaling it for different size models nicely. This
value is then multiplied by 1.5 for this implementation to lower the grid size and
therefore reduce computation time and isosurface tessellation. Should this value be
different from the one the user requires, they can opt to manually input the size of each
grid length in which case this calculation will be avoided.
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Figure 4.1: Images of a dragon head at varying resolutions of distance fields.

Figure 4.2: A diagram illustrating the 7
different regions possible for a triangle in

2D or 3D space.
Figure 4.3: Dot product rules for

determining if A is the closest vertex.

4.2.2 Distance from point to triangle

To calculate the distance from a grid point P to the closest triangle, the entire mesh
must be iterated through per node. Each iteration calculates the distance from the node
to the closest point on the current triangle, keeping track of the shortest distance until
the entire mesh has been searched. As discussed in the paper by Jones [18], this problem
can result in the closest point being on the triangle, on an edge or a vertex. Knowing
this, the first step towards determining the closest point is to find the region in which
the point lies. A point can lie within 1 of 7 regions on or around the triangle, the regions
used for this implementation are largely inspired by the work by Jones and result in the
regions shown in Figure 4.2.

The first region determined is r0 which requires P to lie within edges
−→
AB,

−−→
BC and

−→
CA.

Considering this, the outwards pointing vector for an edge
−→
AB can be found, by taking

the cross product of the directed edge and the normal of the triangle. Once the outwards
pointing vector is obtained, applying the dot product to that and the vector representing
−→
AP , returns a negative value if behind the line. The code derived from this concept is
shown in the code snippet shown in Listing 4. Should the point lie within r0 after testing
all edges of the triangle, calculating the distance to the triangle is simply the distance
from the point to the plane. This can be found using equations 1-3 in Jones’ paper [18].
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float testAB = glm::dot(glm::cross(AB, N), AP);
float testBC = glm::dot(glm::cross(BC, N), BP);
float testCA = glm::dot(glm::cross(CA, N), CP);

Listing 4: Code snippet showing how the location of P with respect to each edge can be
obtained.

Once it can be determined that the point does not lie within the bounds of the triangle,
the program aims to find out if P lies closest to a vertex (r1, r3, r5 in Figure 4.2).
Similar to the method outlined above, the dot product is used to determine which side
of a directed edge P lies 4.3. Using vertex A as an example, A is the closest vertex and
−→
AP describes the distance to the triangle if the following Equation 4.1 is true:

−→
AB ·

−→
AP <= 0 &&

−→
AC ·

−→
AP <= 0 (4.1)

The final regions to test for are the cases where the point P is closest to one of the 3
edges of the triangle (r2, r4, r6). At this stage, the calculations needed to test for this
have already been done and it is just a matter of which calculations to use for each case.
Determining if

−→
AB is the closest edge requires

−→
AB ·

−→
AP ,

−→
BA ·

−−→
BP and the test done to

determine which side of
−→
AB the point lies (testAB in Listing 4) to all be positive values.

Should this be true and the point lies on the edge, calculating the distance can be done
as shown in Equation 4.2.

length(
(
−→
AP ×

−−→
BP )

length(AB)
) (4.2)

4.2.3 Choosing the sign

Once the distances for each point in the scalar field can be calculated, the final step to
creating a signed distance field is to find the sign for each distance. The sign of the
distance is dependent on which side of the triangle the point lies. For points behind the
triangle, which are in the opposite direction to the face normal, they are referred to as
positively signed. In the other case, where points are in front of the triangle, distances
are negatively signed. As done in the previous section 4.2.2, the dot product can be used
to find which side of a plane a point lies in 3D. For this calculation, the vector

−→
hP ,

where h is the closest point found on the triangle, must be used with the normal of the
triangle at such a point. This requires us to know the normal/pseudonormal [3] for
every vertex, edge and triangle in the mesh so that the sign can be accurately produced.
To find the normal of each triangle, the cross product,

−→
AB ×

−→
AC, is normalised. Using

the face normals, edge normals can be calculated as the normalised sum of the two faces
it joins. Finally, vertex normal’s can be found as the weighted sum of all triangle
normals of which the vertex can be found. The weighting of each face normal is simply
the incident angle on the vertex [3] as the resulting normal is normalised. It is worth
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noting that each of the normals are pre-calculated and stored after the mesh is read into
the program to prevent having to re-calculate them on every iteration.

4.2.4 Optimisations

With each node in the grid requiring that all triangles in the mesh be iterated over and
the distance calculated, computing the signed distance field for large meshes can be
expensive. Fortunately, this algorithm can be easily parallelised to make use of all
threads on a CPU, speeding up the implementation significantly. The OpenMP library
[31] is used to parallelise the entire set of nested for loops as shown in Listing 5. This
splits the work across all available threads on the CPU. For example, using a 12
threaded processor on a grid size of 360x360x360 would result in each thread computing
30x360x360 nodes. This is possible because the only dependencies lie within the nested
loop itself, meaning that, should node[30][23][52] complete before node[12][34][16] no
data will be overwritten or be relied on by any other calculations.

float xStart = minPoint[0];
#pragma omp parallel for
for (int xID = 0; xID < xSize; xID++) {

float x = xStart + (xID * sizeOfGrid);
float yStart = minPoint[1];
for (int yID = 0; yID < ySize; yID++) {

float y = yStart + (yID * sizeOfGrid);
float zStart = minPoint[2];
for (int zID = 0; zID < zSize; zID++) {

float z = zStart + (zID * sizeOfGrid);

Listing 5: Code snippet showing the parallelisation of the grid traversal.

Further optimisations involve the usage of bounding boxes to accelerate the closest
triangle search process. This optimisation utilises the idea of bounding volumes
mentioned in [19] to reduce the number of triangles checked per grid node. The
implementation of this is simple and works especially well for higher distance field
resolutions. The first step is to divide the grid into boxes that are much larger than a
grid cube, this implementation aims to have each bounding box be around 8 grid lengths
in size on each dimension. Once each bounding box is defined, each triangle in the mesh
is assigned to one or more bounding boxes. A triangle can be in 3 boxes at most with
the position of each vertex on the triangle being the deciding factor. It is important to
ensure that bounding boxes do not store multiple references to the same triangle. To
prevent this, the unordered set data structure provided in the C++ standard library is
used. Once this step is complete, for each node, all bounding boxes within a certain
radius are found. The implementation uses a set radius of 14 grid lengths as it is



CHAPTER 4. SOFTWARE IMPLEMENTATION 29

guaranteed to be greater than a single bounding box which is defined as 8x8x8. With
the closest bounding boxes found, the triangles contained in those boxes are the closest.
This significantly reduces the number of triangles that need to be checked causing a
significant speed up.

A frequent scenario of using the bounding box method is that the surrounding bounding
boxes have no triangles assigned to them. In this case, no closest triangle can be found
so the algorithm can make 1 of 2 choices. The first choice, and safest choice, is to
default to checking every triangle in the mesh for the closest triangle. This is slow but
produces accurate results in all cases. The second choice employs the idea that there is
no nearby triangles and the grid node must be in empty space. Therefore, the algorithm
assumes that the surrounding nodes are in the same area of space (outside or inside the
mesh) so the exact distance does not matter. In this case, a value of 1000 distance is
given to the node and no triangle calculations are made. This results in an inaccurate
distance field, however, it yields massive speed ups in SDF calculation time. In order to
process the inaccurate distance field, the marching cubes algorithm must take note of
any distances of exactly 1000 distance. In the case of a cube containing a single 1000
distance, it can be assumed that the cube is in empty space and is therefore assigned
case number 0 resulting in no triangles. This method works extremely well for sparse
distance fields where the mesh has lots of inside/outside space. It is however not
suitable for meshes with holes in as it cannot guarantee a correct isosurface. This is
because the inside and outside of a mesh is not strictly differentiable so points with no
nearby triangles may still require the closest triangle to be calculated. To discern the 2
choices, the mesh is checked for holes once the mesh has been read in. If the mesh has
no holes, the user will be prompted that the process can be optimised and the second
choice is available. Allowing the user to make the choice means that if they wish to use
the distance fields in other applications the results can still be valid.

4.3 Marching Cubes Algorithm

To complete the construction of an iso-surface from a given scalar field, such as the one
described in the previous section, the marching cubes algorithm detailed by Lorensen
and Cline [24] can be applied. This algorithm takes a signed distance field (SDF) and
outputs a manifold surface which is to say it is free of holes and self-intersections, as in
the aims of the project. It does this by "marching" through each cube of the SDF and
generating up to 5 triangles placed at the intersection between the surface and the cube.
This section will describe the steps taken to implement this algorithm and the way in
which the program can be tested.
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Figure 4.4: A single cube as defined by the look-up table in Appendix A. Vertices are
labelled in black and edges in red.

4.3.1 Case tables

For this marching cubes implementation, all 256 cases have to be computed and stored
in a look-up table so they can be easily accessed as detailed in the design (3.2.3). As
discussed and rectified by Montani et al. [26], the original marching cubes tables [24]
contain holes for ambiguous base cases 3, 6, 7, 10, 12 and 13. They therefore proposed
that additional cases for the complements of these cases be produced. Applying this to
the implementation of this project required amending the original table by Lorensen and
Cline with the fixed cases. This subsection will detail the impact of the changes made
and the general format the look-up tables take.

To define the look-up table, shown in Figure 4.6, each of the vertices and edges on the
cube must be indexed so they can be referred to when placing the vertices of a triangle.
The layout of a single cube is shown in Figure 4.4 with vertices labelled 0-7 and edges
0-11. Knowing the indices of each edge on the cube, a single triangle in the look-up
table is defined by 3 edge indices. For example, the 3 numbers: 0, 3, 8, signify a triangle
with vertices lying on edges 0, 3 and 8 as shown in Case 1 of Figure 4.6. A full example
of a case entry can be seen in the below code snippet, where the first number in the
array is the number of triangles, the last is the base case (Figure 4.6) and a -1 signifies
no more triangles.

case[21] = [ 3, 9,1,4, 1,7,4, 7,1,3, -1,-1,-1, -1,-1,-1, 6 ]

Before constructing the "fixed" look-up table as proposed in [26], the original table from
[24] was tested with the holes being immediately apparent. Cases that should mirror
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(a) Using Lorensen and Cline’s [24] triangle
configurations.

(b) Using Montani et al. [26] triangle
configurations.

Figure 4.5: Cases 57 (left cube) and 147 (right cube) side by side. White vertices
indicate they are inside the mesh and black outside. Similarly, front facing triangles are

light grey and back facing triangles a dark grey.

each other when side by side were not always correct, as shown in Figure 4.5a. By
checking these cases and noting their configurations before applying the changes by
Montani et al., they can be re-tested to check the validity of the finalised look-up tables.
Doing just this results in the same configuration used in Figure 4.5a but with a new set
of triangles that remove the hole produced by the original tables (see Figure 4.5b).
Applying this before and after test to a series of ambiguous cases reveals that the new
look-up table produces a watertight mesh every time. Code listing 6 demonstrates how
case 57 (the left cube in 4.5) is changed in the look-up table.

// Compliment of case 57, case 198
case[198] = [ 4, 11,3,2, 1,0,10, 0,6,10, 6,0,4, -1,-1,-1, 15 ]
// Case 57 Before changes
case[57] = [ 4, 11,2,3, 1,10,0, 0,10,6, 6,4,0, -1,-1,-1, 15 ]
// Case 57 After changes
case[57] = [ 4, 1,10,2, 0,3,11, 0,11,6, 0,6,4, -1,-1,-1, 15 ]

Listing 6: Code detailing the changing of a compliment case as per the paper by
Montani et al. [26].

4.3.2 The March

Once the 256 possible cases have been collated into a look-up table (Figure 4.6) that can
be referenced in the main application, the main algorithm can begin. For each cubic
region of the SDF, the program starts by generating the case number that corresponds
to one of the 256 cases in the lookup table. As described in the original marching cubes
paper [24], the 256 cases are equivalent to an 8-bit binary number describing the state of
each vertex of the cube. Therefore, to calculate the case number, this implementation
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(a) Case 0 (b) Case 1 (c) Case 2 (d) Case 3

(e) Case 3C (f) Case 4 (g) Case 5 (h) Case 6

(i) Case 6C (j) Case 7 (k) Case 7C (l) Case 8

(m) Case 9 (n) Case 10 (o) Case 10C (p) Case 11

(q) Case 12 (r) Case 12C (s) Case 13 (t) Case 13C

(u) Case 14

Figure 4.6: The set of base cases used for this project was constructed using the original
cases by Lorensen and Cline [24] and improved upon using the solution by Montani et

al. [26].
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traverses each vertex of the cube, in the order outlined in Figure 4.4, applying a 1 if the
signed distance is positive and 0 otherwise. This results in case 147 (right hand cube in
Figure 4.5b) being represented as 1001 0011 with 4 vertices inside the mesh (1) and 4
outside the mesh (0).

With the case number acquired, the triangles needed to represent the cube are found in
the lookup table as a set of vertices placed on the edges of the cube. Each vertex
position is found by linearly interpolating along each intersected edge to find its zero
crossing as required of the application by FR 2.4. More details on the interpolation
algorithm can be found in the next subsection (4.3.3). Each set of 3 vertices defining a
triangle within the cube is then pushed back onto an array to be stored. This array,
sometimes known as triangle soup, defines the mesh entirely by the end of the algorithm
as a set of triangles with no defined order.

To convert from the triangle soup into the directed edge format described in section
4.1.2, the entire array is iterated through with each newly found vertex given a unique
vertex ID. This vertex ID is then used to define each face within the structure creating
an indexed vertex array and edges array. From this data, the final step is to assign each
edge its other half which is done by searching the entire edges array for the occurrence
of the inverse edge. An example of this would be the edge defined in the array as 3, 1

would have its other half where the pattern 1, 3 occurs. Note that despite the edge array
being 1-dimensional each triangle is defined in sets of 3 and therefore edges are circular
within that set.

4.3.3 Interpolation of edges

Given a pair of vertices that define an edge and the signed distances corresponding to
each vertex of the edge, the intersection point of the surface can be found using linear
interpolation [24]. The linear interpolation formula shown in Equation 4.3 can be used
to produce the following line of code to retrieve the vertex location of the intersection.

vertexA + float(ISOVALUE - distA) * (vertexB - vertexA) / (distB - distA)

y = y1 + (x− x1)
(y2 − y1)

(x2 − x1)
(4.3)

The implementation above defines ISOVALUE to be 0.00005 which is the point at which
the surface crosses the threshold in the SDF. The reason a value of 0.00005 is chosen
over an integer value of 0, which would perfectly split negative and positive values, is to
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Figure 4.7: Visualisation of entries in 4.1 given vertex position (0,0,0).

prevent the occurrence of zero-area triangles. A zero-area triangle is one where all 3
vertices of the triangle are positioned on the same line or in this case the same vertex.
Applying linear interpolation to an edge with distance values 0 and 2 would result in the
interpolated point being placed on the vertex whose distance is 0. Whilst this would be
entirely correct as that vertex must lie on the surface of the mesh, this would produce
the same result for all 3 edges of the triangle. This would create a triangle defined by a
single point which can prevent the mesh from meeting the requirements of being
manifold. With this knowledge, the floating point precision of the generated SDF, which
for this implementation is 4 decimal points, can be exploited to guarantee that the value
of 0.00005 could never occur in the SDF. Although this trick results in the reduction of
mesh accuracy compared to the original input mesh, the change is trivial when
considering the topological correctness of the isosurface.

Another possible error that can result from the interpolation of points along an edge is
the result of multiple vertices being placed on the same edge. Due to the possibility of
floating point error when calculating with floating point numbers, the same vertex can
be stored with differing values. Both vertex values will therefore be registered as unique
vertices resulting in a non-manifold mesh as certain directed edges will have no other
half. To avoid this, vertices must be limited to one per edge of the SDF, as per FR 2.3,
where checks can be done to determine if an edge already has a vertex assigned to it.
Furthermore, such checks will reduce the need for re-calculating the same values
creating a more efficient and less computationally expensive process. To index this array
and store a vertex ID for each edge, the x y and z values define a grid point and assign
each grid point 3 edges to keep track of, as shown in Figure 4.7. Using this and the edge
IDs assigned with the case tables in 4.4, the look-up table (Table 4.1) can be produced.
This allows the fast retrieval of the edge cube array indices once the edge ID within the
cube is known. Therefore, on initialisation, the array is filled with -1 values which are
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replaced with vertex IDs when necessary. This means the implementation only needs to
check for the value -1 to see if the edge is empty. It is worth noting that this procedure
comes at an increased memory cost with the need for an extra array of size
(xSize− 1) ∗ (ySize− 1) ∗ (zSize− 1) ∗ 3 ∗ 4 bytes. Whilst this is a considerable amount
of memory, especially for very high resolution distance fields, it guarantees that the
mesh will not suffer from issues caused by floating point errors.

edge on the cube xID yID zID edgeID as in Fig 4.4
0 0 0 0 1
1 0 1 0 2
2 0 0 1 1
3 0 0 0 2
4 1 0 0 1
5 1 1 0 2
6 1 0 1 1
7 1 0 0 2
8 0 0 0 0
9 0 1 0 0
10 0 1 1 0
11 0 0 1 0

Table 4.1: The lookup table which takes the edge ID on the cube shown in Figure 4.4
and outputs the set of indices for the grid edge array.

4.4 Edge Collapse

The final process required to generate a low-poly mesh is to reduce the triangle count.
In line with the design explained in Section 3.2.4, the edge collapse program takes the
generated iso-surface in Section 4.3 and produces a manifold mesh with a significantly
reduced polygon count. The program also takes optional inputs from the user regarding
the stopping criteria as in FR 3.2 which will directly influence the output. This section
will detail the techniques applied to choose an edge to collapse on each iteration as well
as the method by which an edge is removed and the mesh simplified.

4.4.1 Quadric Error Metrics

As detailed in subsection 2.2.2, quadric error metrics aim to choose collapsible edges
that will have the least effect on the overall shape of the input mesh. Implementation of
this cost function closely follows the paper by Garland and Heckbert [13] and their
defined algorithm for finding the optimal vertex position.
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Finding the quadric

The first step taken, as stated in the paper [13], was to compute a 4x4 matrix for each
vertex Q which is the sum of squared distances to its planes. Considering this, for each
unique vertex v, the edge array is searched for each triangle t incident on v. Upon
finding each triangle, the aim is to find the fundamental error quadric K, as defined by
Garland and Heckbert [13] as Kp = ppT , where p is the vector [a, b, c, d] as defined in
Equation 4.4. This requires the equation describing the plane in which t lies with
Equation 4.4 being used to describe such a plane. Fortunately, values for a, b and c
correspond directly to the x, y and z components of the triangle’s normal vector which
can be easily calculated as the cross product of 2 edges. This makes calculating the final
value of d a case of substituting a vertex of the triangle into the equation as x, y and z
and re-arranging to find d. The fully implemented function to find K for a given triangle
is shown in Listing 7. Matrix Q is then calculated as the sum of all K’s belonging to a
vertex and stored in a 1D array of 4x4 matrices indexed by vertex ID.

ax+ by + cz + d = 0 (4.4)

glm::mat4 findK(int triangleID){
// Get the triangle
glm::vec3 A = vertices[faces[triangleID * 3]];
glm::vec3 B = vertices[faces[triangleID * 3 + 1]];
glm::vec3 C = vertices[faces[triangleID * 3 + 2]];
// Get the plane
// Step 1: Calculate the normal
glm::vec3 AB = B-A;
glm::vec3 AC = C-A;
glm::vec3 norm = glm::normalize(glm::cross(AB, AC));
// Step 2: Calculate the offset
float d = -(norm.x * A.x + norm.y * A.y + norm.z * A.z);
// Step 3: Plane is [a,b,c,d]T
glm::vec4 p = glm::vec4(norm.x, norm.y, norm.z, d);
// Step 4: Build the matrix
glm::mat4 K = glm::outerProduct(p,p);

return glm::mat4(K);
}

Listing 7: Code detailing the calculation of the fundamental error quadric K when given
a triangle ID.

For optimisation, it is worth considering that in the paper referenced [13], each matrix Q
is symmetric and could be stored as 10 float values rather than the 16 used for the 4x4
matrix. This was ignored for the purpose of this implementation for the sole reason of
simplicity and avoiding the reconstruction of matrices at each update step. If this
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application were to have strict hardware constraints and time requirements this could be
improved with minimal extra cost to computation. This is due to the nature of the
update step, described in Section 4.4.3, only requiring vertices affected by the collapse
to be updated.

Calculating the error

Once Q is known for all unique vertices, the final step is to calculate an error cost for
each directed edge to define the collapse order. Garland and Heckbert [13] define the
error of a single collapse to be ∆(v) = vTQv, where v is the vertex that remains after
the collapse. It is worth noting that this equation returns an array of 4 values when
calculated exactly, which cannot be compared directly. Therefore, the equation is
carried out as shown in Equation 4.5 which returns a float value that can be easily used
for ordering collapse operations by cost.

∆(v) = vT · (Qv) (4.5)

This leaves the question of how v can be chosen for each collapse operation as explained
in Subsection 4.4.2. For each directed edge, the resulting quadric Q is the sum of the
two matrices assigned to the vertices on the edge, Qnew = Qv1 + Qv2. Using this, the
optimal vertex position, as defined by equation 1 in the paper [13], is calculated as in
Equation 4.6 if and only if the determinant of the matrix is not 0.

vnew =


q11 q12 q13 q14

q12 q22 q23 q24

q13 q23 q33 q34

0 0 0 1


−1 

0

0

0

1

 (4.6)

Should the determinant be equal to 0, the application chooses the sending vertex as the
optimal choice vnew which is stored for each directed edge. This could be improved by
choosing the optimal point along the edge in this case, however, due to the time
constraints of this project, the simpler solution was chosen. Once the calculations for
Qnew and vnew are complete, they can be used in Equation 4.5 to return the total error
cost for the directed edge. It is important to understand that although these
calculations can be completed, not every edge collapse results in a topologically valid
mesh configuration. To avoid this, further checks must be done before an edge can be
ordered on the stack, these checks are detailed in subsection 4.4.3.

4.4.2 The collapse operation

This implementation applies the standard edge collapse algorithm detailed by Hoppe
[15], where two vertices are joined across an edge and moved to an optimal position.



CHAPTER 4. SOFTWARE IMPLEMENTATION 38

Figure 4.8: Single edge collapse iteration. Collapsing the green edge removes the red
faces and results in the mesh on the right.

Each iteration of the edge collapse removes 1 vertex, 2 triangles, and 3 edges from the
mesh as seen in Figure 4.8. Assuming that the mesh is topologically correct and that
the edge collapse chosen is valid, this operation is Eulerian, which means that it will
always result in another manifold mesh. Considering this, it is important that the
directed edge data structure be properly maintained during the removal of the data.
This means all indices used relating to vertices, edges, and other halves must be
updated accordingly when data is moved or deleted from the data structure.

The first removal operation completed is the removal of the 2 faces on either side of the
edge. Conveniently, using the directed edge data structure means that the removal of 2
faces and 3 edges can be done with the same operation. Each face is removed one at a
time, however, to avoid holes in the data and mesh, only the last 3 edges/faces in the
array can be removed safely. Therefore, if it is the case that the face to be removed is
not the last 3 entries of the array it is swapped with the final 3 entries. Whilst this then
allows the face to be removed, it creates a problem within the other half array as it is
indexed by the edge position. To fix this the other halves are swapped as well with the
triangle being sent to the back discarded. This is because only the other halves
belonging to the kept triangle need swapping. The update of the other half array
following the face swap is best outlined by the implemented code shown in Listing 8. In
the case that the face to be removed is already at the back of the array, no swap occurs
and instead the other halves for each edge of the triangle are assigned a -1 or -2 value. A
-1 is assigned if it is the first triangle to be removed and -2 for the second. This is
necessary for the re-joining of other halves once the face removal is complete.

Once the faces are removed successfully, the final step is to iterate through the entire
edge array replacing all occurrences of the removed vertex with the index of the kept
vertex. This implementation chooses to keep the sending vertex’s index and update its
position to the optimal one stored with the edge ID as detailed in Subsection 4.4.1. This
joins the hole created by the removal of both faces producing a complete mesh free of
holes. Whilst this would suffice for exporting the file, the other half array must be
updated so the next iteration can function properly. This is where the -1 and -2 values
given to the other halves during the removal operation become helpful. Whilst searching
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// For each edge in the triangle
for(int i = 0; i < 3; i++){

// If the edge will be the same but flipped remove the edge
if(faceID+i == otherHalf[otherHalf.size()-(3-i)]){

otherHalf[faceID+i] = -1 * faceNum;
}
else{

// If the edge already has no other half
if(otherHalf[faceID+i] != -1){

otherHalf[otherHalf[faceID+i]] = -1 * faceNum;
}
// Swap the other half
otherHalf[faceID+i] = otherHalf[otherHalf.size()-(3-i)];
// Update the corresponding other half with the new position
otherHalf[otherHalf[faceID+i]] = faceID+i;

}
}

Listing 8: The code used to update the other half array after a face has been swapped
from the back of the array.

the entire edge array to re-assign the vertices, each other half can be checked for
occurrences of -1 or -2. If found, the edgeID is added to a tuple, since there will be
exactly 2 of each flag. Each tuple can then be used to assign each other’s edgeID as the
other half. This completes the removal operation and maintains the data structure
entirely. A code snippet detailing the joining of other halves can be seen in Listing 9. To
avoid updating the entire edge array per iteration, vertices are removed in bulk at the
end of the process before outputting to the .OBJ file format. This is because the edge
array should be significantly smaller by then and require less computation to apply a
cascading update to remove vertex IDs.

4.4.3 Update and Validation checks

Each iteration of the edge collapse requires the error cost for all affected edges to be
updated and the order of collapse operations to be re-sorted. Furthermore, whilst
calculating the error cost, a collapse operation must be assessed for validity and omitted
from the collapse ordering entirely if invalid.

Update Step

To avoid doing unnecessary computation and speed up the collapse process significantly,
each updated edge during the face removal process is inserted into an unordered set. In
addition to edges that have been directly modified, it is possible that any edges within 2
neighbourhoods or the two-ring of the remaining vertex can be invalid or have differing
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// For each edge in the triangle
for(size_t eID = 0; eID < faces.size(); eID++){

// Check for removed half edge on the first removed face
if(otherHalf[eID] == -1){

firstEdge.push_back(eID);
}
else if(otherHalf[eID] == -2){

secondEdge.push_back(eID);
}

}
// Update the other halves for the kept edges of the removed triangles
otherHalf[firstEdge[0]] = firstEdge[1];
otherHalf[firstEdge[1]] = firstEdge[0];
otherHalf[secondEdge[0]] = secondEdge[1];
otherHalf[secondEdge[1]] = secondEdge[0];

Listing 9: A code snippet used to join the other halves from the removed triangles.

error costs. Accounting for this, each vertex within the one-ring has its edge IDs
inserted into the set of edges requiring an update. Whilst this additional set of checks
increases computational overhead, avoiding this step can cause invalid edges to be
collapsed, resulting in holes in the mesh or flipped triangles. It is also true that for large
meshes, re-calculating all error costs is extremely costly, so minimising the number of
edges updated is optimal.

4.4.4 Validation Step

For this implementation, there are 2 cases in which an edge collapse is invalid and must
be omitted from the collapse order to prevent non-manifold outcomes. The first scenario,
shown in Figure 4.9 and outlined on page 119 of [6], results in overlapping triangles. To
avoid this, the one-rings of each vertex defining the edge must intersect exactly twice. If
it is the case that 3 or more intersections are found, the update can be avoided and the
error cost stored as -1 so it can be left from the collapse order. Equally, 2 intersections
when both one-rings have only 3 vertices, suggest a tetrahedron is present which cannot
be decimated further, resulting in another invalid case. Calculating the one-ring twice
per error update can be costly as it requires iterating through the entire edge array. To
avoid this, the one-ring is calculated once for each vertex at the start of the program.
This can then be referenced for each vertex whenever it is needed, providing that it is
kept up to date with each collapse. The update step for the one-ring array is then
simply the union of the one-ring around each vertex on the edge - excluding the kept
vertex and removed vertex IDs. It is also necessary for the removed vertex to be erased
from all vertices in its one ring and the kept vertex added if it is not already present.
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Figure 4.9: Invalid edge collapse operation resulting in overlapping triangles and invalid
topology.

Figure 4.10: Invalid edge collapse operation resulting in a flipped triangle causing
self-intersection.

The second case results in a flipped triangle which causes overlaps in the mesh as shown
in Figure 4.10. Once the optimal vertex for the collapse has been calculated, each
triangle that would inherit the new vertex compares its current normal to the normal it
would have should the old vertex be replaced. If the dot product between the old
normal and the new normal is less than 0 the triangle has been flipped and is therefore
an invalid collapse. Once again this is signalled with a -1 in place of the error cost and
the error cost update can exit early. This check can be costly due to the computation of
the normal twice per triangle. It is possible to store the normal for each triangle and
therefore only require one cross product per check at the cost of added memory
overhead. There is also a special invalid case that can be found during this check that
whilst not immediately noticeable, can cause holes to occur in further collapses. The
case in question is where a zero-area triangle is made. This triangle then has a normal of
(0,0,0) which returns 0 for the dot-product calculation used to check for the normal flip.
Therefore, to avoid this case, the less than or equal to operator is used to assess the
validity of the dot product calculation.

4.4.5 The full algorithm and test cases

Combining the methods detailed in the above subsections results in the iterative
reduction of the given isosurface as detailed in the design outlined in Section 3.2.4.
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Whilst the specifics are detailed for each key component of the entire algorithm, the
ordering and final steps before exporting to OBJ are summarised in the following
algorithm, Listing 10.

for each vertex
find error quadric Q

for each edge
find error cost

sort error list
while (error list != empty) || (numTriangles < desiredTriangleCount)

if (smallest error > errorTolerance) exit loop
get keptVertexID and removedVertexID
remove faces
replace all instances of removedVertexID with keptVertexID
for each updated edge

find error cost
sort error list

for each removed vertex
remove vertex from vertices
decrement all vertex IDs greater than removed ID

for each vertex
calculate vertex normal

Listing 10: The overall edge collapse algorithm.

The main loop of the application is stopped if one of 3 criteria is met. The first and only
non-optional criterion is that there are no more valid edges to collapse. This prevents
the output mesh from becoming non-manifold by being forced to collapse edges that
would result in holes or triangle folds. The other 2 criteria can have optional values,
these being the number of triangles to reach and the error tolerance. Should the user
wish to specify one and not the other the code will only use that stopping criteria along
with the valid edge check. Specifying both criteria will stop the program when the first
one is met. In the case that neither one of the criteria is specified, the error tolerance is
defaulted to 5.0. This is to prevent the mesh from becoming too dissimilar to the
original input in the default use case.

To confirm that the collapse algorithm works as intended, some simple test cases were
produced with known and calculable outcomes. Each test case was based on the
reduction of an octagon as shown in Figure 4.11 where the outcome of the first collapse
results in a pyramid being produced, see Figure 4.12. By discarding the quadric error
calculation step and specifying the edge to collapse, the face removal operation can be
tested explicitly. Furthermore, due to the small size of the mesh, the data structure is
easily readable and can be debugged with hand calculations to ensure the correct
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Figure 4.11: Octagon test case before
collapsing edges.

Figure 4.12: Octagon test case with after
collapsing edge 0 (v0 to v1).

updates are made. See Tables 4.2 and 4.3 for the result of a singular collapse operation
on the octagon and the resulting data structures (without vertex removal step). A
further collapse of the pyramid will result in either a plane or a tetrahedron. By ensuring
that both iterations work as expected here, any holes created by the full algorithm are
likely due to validity checks being missed and invalid edges being collapsed.

edgeID 0 1 2 3 4 5 6 7 8 9 10 11
vertexID 0 1 2 2 1 3 4 0 2 4 2 3

otherHalfID 13 3 7 1 15 10 20 2 9 8 5 21
edgeID 12 13 14 15 16 17 18 19 20 21 22 23

vertexID 5 1 0 3 1 5 4 5 0 4 3 5
otherHalfID 16 0 19 4 12 22 23 14 6 11 17 18

Table 4.2: The state of the edge and other half array after before any edge collapses on
the octagon shown in 4.11.

edgeID 0 1 2 3 4 5 6 7 8 9 10 11
vertexID 4 3 5 2 0 3 4 0 2 4 2 3

otherHalfID 11 17 12 7 15 10 14 3 9 8 5 0
edgeID 12 13 14 15 16 17 18 19 20 21 22 23

vertexID 4 5 0 3 0 5 - - - - - -
otherHalfID 2 16 6 4 13 1 - - - - - -

Table 4.3: The state of the edge and other half array after collapsing edge 0 (v0 to v1).
Changed values are highlighted in red with removed values denoted by a dash. 4.11.



Chapter 5

Software Testing and Evaluation
Considering the outcome of the project with regards to the project aims (Section 1.1)
and requirements (section 3.1), is essential to evaluating the implementation outlined in
Chapter 4. The evaluation techniques used are designed to assess non-functional
requirements 1, 4 and 5. Furthermore, the set of criteria evaluated has been chosen to
align with other research papers on low-poly mesh generation such as the ones
mentioned in the literature review (section 2.1). In particular, the papers by Gao et al.
[12] and Chen et al. [8] present varied evaluation methods. This chapter will detail such
evaluation methods, explaining how they were carried out, how metrics were obtained
and how the results compare against tools used in industry.

To maintain fairness in the results, each section will evaluate the same 9 input meshes
displayed in Figure 5.1. This will allow results to be discussed comparatively in the
concluding statements (Chapter 6). To keep results representative of the program,
optional user inputs (as shown in Figure 3.1) will not be used. Instead, the default
conditions set out in the implementations will be used so that no unintended bias can be
introduced which may favour different test cases. For example, choosing a large number
of desired triangles would result in very fast outputs for lower poly inputs whilst larger
meshes would have minimal change. By allowing the program to use default settings,
the results will be a good representation of the program’s performance without human
intervention. In addition to this, default settings allow non-functional requirements 1
and 5 to be tested with only the program’s capabilities.

5.1 Test cases

To test the program 9 different object files will be used each with varying polygon
counts and topological qualities. Test cases were obtained through freely available online
resources such as the GitHub repository of common 3d test cases [17] and the Thingi10k
dataset [41] which links to Thingiverse [38] which is a model sharing website for 3D
printing. Each case was chosen to provide a set of manifold and non-manifold meshes
with the minimum number of polygons wanted being 10,000. This is so the full extent of
the project requirements can be assessed, particularly NFR 5. Furthermore, the largest
mesh tested will be no more than 250k due to time constraints and the hardware
making very large meshes unfeasible to test. Each of the test cases used for this
evaluation is shown in Figure 5.1 with details of their topology in Table 5.1 and sources
listed in Table 5.2.

44
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Mesh ID Mesh Name No. Triangles Hole free Is Self-intersecting
1 Armadillo 99,976 True False
2 Buddha 98,601 False False
3 Bunny 69,451 False False
4 Dragon 249,882 True False
5 Egg Cup 56,722 True True
6 Monster 69,950 True False
7 Rocket 47,032 True False
8 Squirrel 17,596 True False
9 T.Rex 167,766 False True

Table 5.1: Table showing the set of test cases used to evaluate the project.

Mesh ID Original Name Source Original Source

1 Armadillo [17] Stanford University Computer
Graphics Laboratory

2 Happy Buddha [17] Stanford University Computer
Graphics Laboratory

3 Stanford Bunny [17] Stanford University Computer
Graphics Laboratory

4 xyzrgb dragon [17]
Stanford University Com-
puter Graphics Laboratory /
https://www.xyzrgb.com/

5 Egg cup [38] https://www.thingiverse.com/
thing:17079

6 Monster [38] https://www.thingiverse.com/
thing:30415

7 Rocket Retro 004 [38] https://www.thingiverse.com/
thing:26163

8 Squirrel [38] https://www.thingiverse.com/
thing:11705

9 T-Rex Skull [38] https://www.thingiverse.com/
thing:308335

Table 5.2: Table showing the set of test cases and where their original sources and
sources can be found.

5.2 Manifold output tests

As a detailed requirement for the project (FR 3.5, NFR 4), all output meshes generated
by the program should be manifold. This means that meshes must be watertight,
include no pinch points, and be free of self-intersection. Due to time constraints and the
complexity involved with checking for self-intersection, this evaluation will only check
for pinch points and holes in the mesh. This section will detail the testing process for
each criterion and the results acquired from each of the test cases detailed in Section
5.1. Furthermore, the source code for the manifold checker can be found in the GitHub

https://www.xyzrgb.com/
https://www.thingiverse.com/thing:17079
https://www.thingiverse.com/thing:17079
https://www.thingiverse.com/thing:30415
https://www.thingiverse.com/thing:30415
https://www.thingiverse.com/thing:26163
https://www.thingiverse.com/thing:26163
https://www.thingiverse.com/thing:11705
https://www.thingiverse.com/thing:11705
https://www.thingiverse.com/thing:308335
https://www.thingiverse.com/thing:308335
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Figure 5.1: Test cases to be used throughout the evaluation process.

repository linked in Appendix A as ManifoldChecker.cpp. Testing a mesh to see if it is
manifold is then simply a case of inputting it into the program and waiting for the result.

5.2.1 Testing for holes

Using the directed edge data structure [39] as implemented in 4.1.2, testing for holes is
quite simple. A requirement for a manifold mesh is that all directed edges must occur in
pairs. Therefore, each edge must have a corresponding other half which works both
ways. For example, if edge 5 has other half 11 then edge 11 must have other half 5.
Therefore, the other half array can be exploited to check for this case. Should any cases
be found that do not meet this requirement then it can be determined that the mesh is
non-manifold as the offending edge must have a hole/border on one side.

5.2.2 Testing for pinch points

A pinch point is where separate components of a mesh are joined by only a single
vertex. This results in multiple cycles possible around a vertex making it non-manifold.
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Testing for pinch points is more complex than testing for holes as there are no
immediate ambiguities in the data structure. To test for this, the mesh must be entirely
traversed from a single starting point to determine if all faces can be reached. If it is the
case that not all faces can be reached, the mesh must either contain pinch points or
consist of multiple components. In either case, the mesh would not be manifold and
would result in the mesh being marked as non-manifold in the results table TABLE.

5.2.3 The results

Inputting the evaluation test cases (Table 5.1) into the manifold checking application
yielded the results displayed in Table 5.3. The table has been split into the various
criteria required for a mesh to be manifold so that any patterns of failure can be noted.

Mesh
ID Watertight Pinch-point

Free
Singular
Component Was Manifold Is Manifold

1 True True True True True
2 True True False False False
3 True True True False False
4 True True True True True
5 True True True False True
6 True True True True True
7 True True True True True
8 True True True True True
9 True True False False False

Table 5.3: Table showing the results of the manifold testing on each of the test cases
shown in Table 5.1.

The results table shows that 6 of the 9 test cases resulted in manifold outcomes as per
the results of the manifold checker. In the 3 cases where the outputs aren’t manifold,
they all fail to be a single polyhedron, this is represented by the singular component
column in 5.3. Observing the state of the failing meshes shows that none were
completely manifold before due to all meshes having holes and mesh 9 having
self-intersections. Looking at the manifold outputs, 1 of the 4 non-manifold inputs has
been fully repaired with all of the manifold inputs being maintained.

5.3 Computation times

This project aims to compute a low-poly mesh within a reasonable time frame as stated
in section 1.1. The aim is then further refined into non-functional requirement 1, which
defines a minimum criteria for the application to meet in terms of processing time. It is
therefore necessary for the execution time of the program to be measured so that it can
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be assessed. This section of the evaluation will measure the time taken to execute on
each of the test cases (section 5.1) and comment on the results in terms of the hardware
and input parameters.

Due to the separation of the applications, as discussed in section 3.2.1, the total time for
the application cannot be measured in one go. For this reason, execution time was
measured for each program separately and then totalled up to represent the complete
execution time of the entire process. To ensure that the results were accurate, timers
were incorporated into the code using the chrono library, where the time at the start of
the application is compared to the time at the end and a run time is calculated. The
start time is taken as soon as the input files have been read into memory and user inputs
are taken. The final time is taken before outputting the data to file once all calculations
are done. The reason that the timer starts once the inputs are taken is to prevent the
timer from giving bad results due to delayed input from the user. Despite the timer not
encapsulating the full program, the main computation of the code is covered so the
results should still be representative of which application is taking the longest.

5.3.1 Hardware and Testing Environment

To keep the testing of each test case fair, all executions were completed on the same
machine with minimal background applications running. This ensures that all timings
can be compared against each other without additional considerations needed for
different scenarios or hardware. The system specifications for the machine used for all
testing are detailed in Table 5.4. More details on the CPU of the system are available in
Table 5.5 since the programs are heavily CPU reliant. Details of the GPU specifics have
been omitted as it is not used with the current implementation.

Operating System Windows 11 Pro N
CPU AMD Ryzen 5 5600X
RAM 16GB / DDR4 / 2400MHz
GPU NVIDIA GeForce RTX 3070 / 8GB GDDR6

Storage 1TB M.2 NVMe PCIe Internal SSD

Table 5.4: System specifications of testing machine.

CPU AMD Ryzen 5 5600X
No. Cores 6

No. Threads 12
Base Clock 3.7GHz
Max Clock 4.6GHz

Cache 32MB

Table 5.5: Specifications of the AMD Ryzen 5 5600x CPU.
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Figure 5.2: A scatter plot showing the execution timings shown in Table 5.6 against the
input number of triangles.

5.3.2 The results

Measuring the computation time across all 3 stages of the low-poly mesh generation
program produces the results table, 5.6.

Mesh ID Distance Fields Marching Cubes Edge Collapse Total Time
1 364 34 876 1274
2 316 135 756 1207
3 341 18 519 876
4 1229 182 4564 5975
5 135 46 1104 1285
6 315 14 423 866
7 129 3 121 253
8 35 1 51 87
9 706 56 1470 2232

Table 5.6: Table showing the full process execution times for each of the test cases
shown in Table 5.1. Time is shown in seconds.

The results table 5.6 shows the execution time for each of the 3 stages of the low poly
mesh generation. Plotting these results on a graph of execution time against the number
of triangles produces Figure 5.2. This visualisation clearly highlights which application
takes the most time, this being the edge collapse (light blue). The second most time
consuming application is the distance fields with the marching cubes being the least.
Further looking at the data, time is seen to increase linearly with the marching cubes
and distance fields algorithms whilst it increases exponentially with the edge collapse. It
can be therefore assumed that larger triangle counts would only increase the execution
time further and at a faster rate. Considering the outliers on the data, the egg cup
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(mesh ID 5) takes considerably longer to calculate for the edge collapse than what the
trend suggests it should take. Furthermore, mesh 9 operates much faster than the trend
line would suggest, which suggests that the execution time increase between 160k
triangles and 250k triangles is larger than suggested by the lines of best fit.

5.4 Polygon reduction

The main aim of this project is to reduce the number of polygons from the original mesh
as stated in NFR 5. It is therefore important to test this by evaluating the number of
triangles before and after the application is used. To produce results for this evaluation,
the number of polygons, as shown in Table 5.1, is taken and compared against the
number of polygons in the final output. To provide further insight into the workings of
the application, the number of polygons in the produced isosurface will also be shown.
These values will be framed in the context of percentage reduction so they can be
directly compared with NFR 5 to assess the success of this project given its aims. It is
important to note that, as stated in the opening of this chapter, all models were run
with default parameters to ensure fairness. Therefore, each model shows the number of
polygons reached when the cheapest edge collapse had an error cost greater than 5.

5.4.1 The results

The results of the polygon reduction evaluation are shown in Table 5.7 and show the
percentage of original triangles remaining in the output mesh.

Mesh ID Input No.
Triangles

Isosurface No.
Triangles

Output No.
Triangles

Percentage
Reduction

1 99,976 48,776 5,264 94.73%
2 98,601 44,256 3,628 96.32%
3 69,451 35,744 2,204 96.83%
4 249,882 117,336 11,546 95.38%
5 56,722 57,472 4,412 92.22%
6 69,950 31,556 2,372 96.61%
7 47,032 14,504 1,120 97.62%
8 17,596 7,344 446 97.47%
9 167,766 63,776 3,976 97.63%

Table 5.7: Table showing the triangle reduction of each test case shown in Table 5.1.

The table shows a minimum reduction of 92.22% and a maximum reduction of 97.63%
when stopping at an error cost of 5. These results appear to correlate with the reduction
produced by converting the input mesh to an isosurface. In all except mesh 5, the input
is reduced by around 50% before any simplification is even done. Mesh 5 seems to show
the opposite effect with the number of triangles increasing with the conversion to an
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(a) Dragon with 11546 triangles. (b) Dragon with 5000 triangles.

(c) Dragon with 2000 triangles. (d) Dragon with 500 triangles.

Figure 5.3: Wire-frame images of the dragon mesh (mesh 4) at different polygon counts
demonstrating the usage of the defining triangle count input.

isosurface. This could be the reason why the total reduction is the highest compared to
the other cases.

It is also worth testing that the program works when specifying a desired triangle count
to achieve. In the below images, Figure 5.3 shows mesh 4 at lower triangulations than
the one achieved with the default stopping criteria. The images show that the user can
reduce the number of polygons much further than the default allows in most cases.
Furthermore, by re-feeding the result of the default run into the simplification
algorithm, the time taken the produce the output can be avoided.

5.5 Visual similarity

The visual similarity of 2 meshes can be evaluated quantitatively or qualitatively due to
it being how the mesh looks rendered. Evaluating NFR 7 quantitatively would require
another program capable of generating an error metric between the two methods.
Examples of these techniques are used by Chen et al. [8] to evaluate their method and
consist of the Hausdorff distance, Light field distance, Silhouette and normal differences,
and Peak signal to noise ratio. Each of these techniques produces a similarity metric
that can be used to determine how similar 2 meshes are. Contrasting from this, the
qualitative method is much simpler and consists of comparing the two meshes side by
side and making a statement as to their visual similarity. Whilst numerical methods like
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Figure 5.4: All before and after images of test cases (as described in Table 5.1) with
input images on the left and low-poly output on the right. Meshes have been rendered

using Blender [5].

the Hausdorff Distance [22] allow more accurate comparisons and assumptions to be
made implementing a program to do this takes time. Therefore, due to the time
constraints and the scope of this project, the qualitative method will be used for this
evaluation. This is acceptable since considering the context of the project, the output
will likely be used in games where visual quality to the eye is what matters.

5.5.1 The results

To carry out the visual comparison method, before and after images of the mesh are
gathered and compared side by side as shown in Figure 5.4. The results of this
comparison show very little deviation in shape or features. This is especially true for the
larger meshes, these being the dragon (mesh 4) and the T.Rex skull (mesh 9). Smaller
models such as the squirrel have their reductions more noticeable, whilst the general
shape is preserved, the distinct lack of triangles stands out. Further inspecting the
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Figure 5.5: Size comparison of meshes 3, 5, and 6 with input meshes on the left and
output meshes on the right.

visual properties of the output meshes, it can be noticed that the scale of the input
mesh is not retained through the process. This can be seen in the scale comparison
images in Figure 5.5. Whilst the rabbits are of similar size, the monster and egg cup are
considerably larger on the output than the input. Therefore, it must be noted that
whilst features and shape are preserved, the scale, whilst proportionate, can be of
different size to the input mesh. This is something that will be discussed in section 5.7
as to whether this is acceptable as well as possible causes for the problem.

5.6 Comparison with industrial tools

This section will compare the results of this project with the ones produced by similar
applications in the industry. This stage of the evaluation will focus on how the outputs
compare visually and topologically as well as the time taken to produce each result. The
applications used are the ones produced by Chen et al. [8] as well as the inbuilt tools in
Blender [5]. Whilst other applications are used frequently in industry and other
academic evaluations [12, 8] like Simplygon [37], they are not freely available so could
not be used in this project. Furthermore, the program by Gao et al. [12] was considered
for comparison. However, it was discarded due to the application being made for
building models only, meaning any comparison to it would have been biased towards the
model produced for this project.

The 2 programs are given the same 9 test cases (Table 5.1) and used to simplify the
mesh. The results of the program produced by Chen et al. are shown in Table 5.8 with
some visual examples of the outputs in Figure 5.6. Blender allows meshes to be reduced
to any ratio of triangles in the input mesh. Furthermore, this is done in extremely fast
time (less than 2 seconds), therefore, only visual examples of the output meshes are
shown in Figure 5.6 with meshes produced to 5% of the original polygon count. This is
so the visual comparison with the ones produced by this report can be most similar.
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Mesh ID Execution Time Manifold Output No. Triangles
1 20 True 158
2 24 True 142
3 33 True 406
4 2 True 249
5 34 True 534
6 19 True 146
7 16 True 156
8 22 True 122
9 31 True 238

Table 5.8: Table showing the results of the Robust low poly meshing application by
Chen et al. [8].

The results of Table 5.8 show that the application performs much faster than the one
produced by this project and results in much fewer triangles. Furthermore, running
ManifoldChecker.cpp results in all of the output meshes being manifold. Despite this,
the visualisations of the output meshes show that the application can produce
self-intersections as shown in the close up image in Figure 5.7. The lower right of the
image clearly shows a triangle emerging from the mesh which results in a flickering in
that region when moved around in the renderer.

Considering the visual results from Blender (Figure 5.6) show very similar looking
results to the ones produced by this project (Figure 5.4). Despite this, further
examination shows that Blender fails to correct any issues with the mesh, leaving large
holes unchanged. However, this also means that unlike the application produced,
Blender does not produce extra components on occasion for non-manifold inputs. It
should also be noted that Blender produces results in a much faster time frame and is
capable of reducing meshes to any degree specified by the user.

5.7 Discussion of the results

Framing the results highlighted by the evaluation, in the context of the aims and
requirements of the project is important for determining success and future
improvements. The results of the manifold tests highlight that whilst manifold outputs
are not always guaranteed due to multiple components being created, they will always
be watertight and pinch-point free. Whilst this does not align exactly with the aims of
this project, the application is still capable of repairing holes in the mesh to produce
hole free surfaces. Further inspection shows that the reason for this issue lies with how
the distance fields are produced as the isosurfaces have the issue before the collapse,
meaning that NFR 4 has been met. As highlighted in the background research [28],
triangle folds and self-intersections can cause issues for signed distance fields. The
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Figure 5.6: Images showing output meshes from the Robust low poly meshing
application [8] (left) and Blender [5] (right).

Figure 5.7: Close up of the bunny mesh produced by the Robust Low Poly Meshing
application [8].
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results seem to confirm this with the extra components only being produced when
non-manifold meshes are input. A further explanation could be that the resolution of
the distance fields is not high enough causing sections of the mesh to become disjoint.
Despite this, 2/3 of the results are completely manifold with 100% of the outputs being
watertight as per FR 3.5.

In addition to the manifold tests, the evaluation proves that NFR 1 has been met with
the computation time testing. The results show that even with the largest number of
triangles, the application runs in just under the time requirement of 2500 triangles per
second. On the other hand, the graph in Figure 5.2 shows an exponential growth in
execution time for the edge collapse application. This suggests that inputting larger
models into the application may result in execution times exceeding the criteria set out.
Utilising a larger data set with a more varied polygon count could prove this hypothesis.
However, due to time constraints, only 9 input models could be tested with a cap on
how large the models could be as to prevent execution times from taking too long.
Despite this, the application is successful at meeting the aim for a reasonable execution
time however work can still be done in this area. This is especially true when
considering the results from the industry comparison (section 5.6) which show sub 1
minute execution times for all models.

The main objective of this project was to generate low-poly meshes that are visually
similar to the high-poly inputs as reflected in NFR’s 5 and 7. The analysis in sections
5.4 and 5.5 suggest that both of these have been met with the visual comparisons
showing barely any difference in shape and the polygon counts being reduced to an
average of 3.91% of the original count. This is well below the requirement of 10%
outlined in NFR 5 making that requirement very well met. The visual similarity
evaluation highlighted that the scale of the model is not preserved which still relates to
NFR 7. The reason for this scaling of the model is likely due to the marching cubes
algorithm producing the isosurface without knowing the exact distance between grid
points in the SDF. This makes all output models conform to a uniform grid of the same
scale regardless of the input. Whilst this might not be a desired outcome, it can be seen
as a negligible side effect since most models are scaled upon usage anyway. Furthermore,
since the model is still proportionate, the scale does not affect the shape of the mesh
and does not reduce the overall visual quality.

Commenting on the application in the context of the industrial tools presented by Chen
et al. [8] and Blender [5], this project produces comparable outcomes. It is shown that,
like this project, the low-poly meshing algorithm [8] can produce topological ambiguities
in the output mesh when given non-manifold inputs. Furthermore, although it is not the
aim of the application, Blender does not rectify any issues with the mesh. Comparing
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the outputs visually, all 3 programs result in similar looking meshes with the only
difference being the noticeable difference in polygon counts. Chen et al. [8] forces the
mesh output to be the lowest possible number of triangles whilst the project aims to
allow the user to specify the number of polygons in their output. Likewise, blender does
a good job at allowing the user to select any number of triangles for their output mesh
whilst doing so in almost real time. The biggest difference between the project’s
application and the ones used in the industry is the execution time. Blender and the
low-poly meshing application are much faster at reducing the meshes, highlighting that
for the algorithm to be entirely comparable, significant optimisation must be done.

In summary, the program produced matches the aims of this project very well with the
exception of the limitations posed by the distance field method. By running the
application, all functional requirements relating to the inputs and outputs of the
programs were tested and successful. Furthermore, visual and topological testing
highlights that FR 1.3, 2.3, 2.4, and 3.5 as well as NFR 1, 4, 5, and 7 have all been met.
Comparing the produced application to industrial examples shows that whilst it is
comparable with mesh outputs, the execution time can be massively improved in order
to be competitive with the market.



Chapter 6

Conclusions and Future Work
This project aimed to produce an application capable of taking any input mesh and
producing a low-poly output mesh for use in video games. By researching the subject
area of mesh generation and mesh simplification, a 3 stage process was designed
alongside requirements that encapsulated the aims of the project. Using this design, 3
separate applications were developed which, when used sequentially, produce a low-poly
version of the input mesh successfully. Finally, the implementation was critically
evaluated with the project aims and discussed within the context of the industry.

Given the nature of the project, assessing the outputs produced by the application was
key to determining the project’s success. Evaluating the outputs visually and
topologically highlighted that the main aims of the project have been met with the
application generating visually similar low-poly models within a reasonable time frame.
Further discussion of the results emphasises that the application does not always
produce a manifold output due to the presence of extra components caused by
inaccuracies in the distance field computation. Despite this, the outputs produced by
the application are comparable topologically and visually to other freely available tools
used within the industry. Both tools compared reduce polygon counts to a similar
degree with both Blender [5] and the application produced allowing the user to specify
the exact number of triangles desired in the output mesh.

Framing the project outcomes in the context of the industry demonstrates areas for
improvement, particularly showing that optimising the program is worth exploring in
future work. Specifically, it is found that the time taken for the edge collapse algorithm
increases exponentially with the number of input polygons. Optimisations could include
the parallelisation of the process on GPU or the inclusion of acceleration structures to
allow the data to be accessed and modified faster. Furthermore, to guarantee that the
output will be manifold, the distance field algorithm should be reworked to fix
ambiguities in the mesh. This rework could utilise a more visual approach to prevent
the limitations caused by triangle folds and self-intersections.

To summarise, this project has met all aims to a very good extent with the exclusion of
a guarantee that the output mesh will be manifold. The report details the steps taken to
implement the application along with the techniques used to evaluate the project.
Further work from this project should improve the distance field application and
optimise the edge collapse algorithm to compete with other tools in the industry.
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Appendix A

GitHub Repository
The source code for this project is available at:
https://github.com/Tomizzed2001/LowPolyMeshGeneration

To compile and execute the code found in the repository follow the README.md
instructions.
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